# **GLP Statement**

| 1  | Name of   | Study: | Ready           | Biodegrad | dability | Test of | of ANO      |
|----|-----------|--------|-----------------|-----------|----------|---------|-------------|
| ┸. | Traine of | Duauy  | <b>Ti</b> Cau y | Diouceia  | addiii   | I CBU   | JI I II 1 O |

2. Study No.: B12011

I, the undersigned, hereby certify that this study was conducted in compliance with "Standard for testing facility to conduct studies on new chemical substances"

(Yakushokuhatsu 0331 No. 8<sup>1</sup>, Heisei 23, 03.29 Seikyoku No. 6<sup>2</sup>, Kanhokihatus No. 1103310103).

Koei Techno Co., Ltd.

Study Director

Year/Month/Day

The notification was issued by 3 chiefs of the bureaus described below.

<sup>1.</sup> Ministry of Health, Labor and Welfare, Medicine food bureau

<sup>2.</sup> Ministry of Economy, Trade and Industry, Production industry of the bureau

<sup>3.</sup> Ministry of Environment, Synthesis environmental policy of the bureau

# FINAL REPORT

(Draft Version)

Ready Biodegradability Test of ANO

(Study No. B12011)

Koei Techno Co., Ltd.

# Title: Ready Biodegradability Test of ANO

| Study period<br>From:                                                                                                                             |                   |                                          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|------|
| To:                                                                                                                                               |                   |                                          |      |
| Sponsor, name and address: Repre Co., Ltd. 5-3, Nihonbashi-kayabacho 3 chor                                                                       | me, Chuo-ku, T    | okyo                                     |      |
| Testing facility, name and address<br>Koei Techno Co., Ltd.<br>12-13, Hanaten-nishi 2 chome, H                                                    | Higashi-ku, Osa   | aka                                      |      |
| Study director<br>(Test team)                                                                                                                     | Seal              | Year/Month/Day                           |      |
| Testing operator: Yoshikazu Asahi<br>Mimako Tobima                                                                                                |                   | gradability test)<br>degradability test) |      |
| Chiba Testing Facility: Kitasode 25, Sodegaura, Chiba  Chief operator: Minako Yamamoto Koei Techno Co., Lt Cover Area: Analys: Spectrometry (ICP) | is of Inductivity | v Coupled Plasma – Atomic Emiss          | sion |
| Author of final report                                                                                                                            |                   | Seal                                     |      |
| Date of issue                                                                                                                                     |                   | Year/Month/Day                           |      |

# Contents

| Purpose of study and summary of the result                           | 1~2        |
|----------------------------------------------------------------------|------------|
| Introduction                                                         | 2          |
| Materials and method · · · · · · · · · · · · · · · · · · ·           | 2~8        |
| 1. Employed test method                                              | 2          |
| 2. Test item, component after dissociation and standard substance    | 2~3        |
| 3. Control substances                                                | 4          |
| 4. Reagents                                                          | 4          |
| 5. Test organism                                                     | 4          |
| 6. Equipment                                                         | 4          |
| 7. Test condition                                                    | 4          |
| 8. Test concentration                                                | 5          |
| 9. Exposure period · · · · · · · · · · · · · · · · · · ·             | 5          |
| 10. Kind and frequency of observation, measurement, inspection and   |            |
| analysis                                                             | 5          |
| 11. Determination of residual amount of test item and production     |            |
| amount of each component after dissociation                          | $6 \sim 8$ |
| 12. Statistical analysis                                             | 8          |
| 13. GLP Compliance                                                   | 8          |
| 14. Archives                                                         | 8          |
| 15. Environmental factor that may have affected quality assurance of |            |
| test result                                                          | 8          |
| Test result                                                          | 9~12       |
| 1. Confirmation of test condition                                    | 9          |
| 2. Degradability                                                     | 9          |
| 3. Residual rate, degradability, generation rate and mass balance -  | 9~10       |
| 4. Qualitative analysis of niobium ion in test item liquid           | 10         |
| 5. Residual DOC amount                                               | 10         |
| 6. Calculation of IC residual rate and mineralization rate           | 11         |
| 7. Observations and measurements during and after exposure           | 11         |
| 8. Identification of test item and stability under storage condition | 12         |
| Discussion                                                           | 12~13      |
| Conclusion                                                           | 13         |
| List of attached tables                                              | 13         |
| List of attached figures                                             | 13~14      |

# Purpose of study and summary of the result

As a part of safety assessment of a new substance ANO, a ready biodegradability test was conducted.

The result showed, that the degradability by oxygen demand after 28 days exposure in test substance vessels is -11%\*1, 00\*\*1 and 11%\*1 respectively, mean 0%.

The direct quantification was conducted by means of a Liquid Chromatography (LC) for oxalate ion, an Ion Chromatography (IC) for ammonium ion and an Inductive Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)\*2 for niobium ion, since the test item is dissociated to above ions in water. And, based on the result of a preliminary test\*3, the niobium ion is predicted to form a niobium hydroxide (V) which is insoluble degradation product in the test liquid, and hence a retentate of filtered test liquid after the exposure was qualitatively analysed by an Infrared Spectrophotometer (IR). While, the quantification of niobium ion was conducted by ICP-AES after a pretreatment of the test liquid by conc. sulfuric acid.

The analysis showed the following results. The residual rate of oxalate in the test item degradation vessel was mean 0%, in the test item-water was 98% and thus the degradation was mean 100%, of ammonium ion in the test item degradation vessel mean 96%, in the test item-water 98% and thus the degradation was mean 2%, and of niobium ion in the test item degradation vessel mean 0%, in the test item-water 101% and thus the degradation was mean 100%, respectively. Just to be sure, the LC analysis showed no degradation products of more than 1% was found.

An IR analysis was conducted after the exposure of the test item degradation vessel to compare the spectrum with that of standard substance of niobium hydroxide (V), and the identification of both items was confirmed. The generation rate of niobium hydroxide (V) was mean 103% in the test item degradation vessel, and the mass balance of niobium ion and niobium hydroxide in total was 103% in the test item degradation vessel.

The residual rate of DOC was mean 0%\*4 in test item degradation vessels, while 95% in test item-water, and degradation was obtained as mean 104%. And, residual amount of inorganic carbon (IC) was mean 0.8 mg in test item degradation vessels, and the shift of pH towards alkaline was observed, as mean pH8.83.

From the results described above, it is considered that oxalate ion derived from the test item can be degradable by microbes and carbon dioxides generated by the degradation were to retain as IC in the test liquid since the test liquid was alkalinity and hence the IC residual amount wasn't reflected to the oxygen demand. A substantial mineralization rate of the test item by microbes was calculated as mean 18% by using an equation of "Mineralization rate = Degradation (%) by oxygen demand + IC residual rate (residual IC percentage against theoretical DOC) (%)". Further, supplementarily explained, the mineralization rate of mean 18% could not reach to 60% as a criterion of ready biodegradability, and the reason of this lower rate than the expected was considered due to a wide variation of the measurement error attributable to very small values of ANO's theoretical oxygen demand 2.8 mg and the theoretical DOC 4.3 mg.

From analysis results of LC and DOC, it is considered that oxalate as an organic component of ANO is biodegradable and completely mineralized under the present test condition. However, it is also considered that ammonium ion remains as unchanged form, and niobium ion remains as niobium hydroxide (V).

The difference of degradation rate from the maximum to the minimum of replicates was less than 20%, other than calculated by the oxygen demand, and as well, the degradation of aniline was higher than 40% on 7 days after the exposure and higher than 65% on 14 days after, it was regarded the test was valid.

It is concluded that ANO is not ready biodegradable under the test condition.

- \*1 The difference of % degradation from the maximum to the minimum of replicates calculated by the oxygen demand was 22%, and this value deviates from the allowance specified as less than 20% in SOP. The reason of this deviation is speculated by a wide variation for the measurement of oxygen demand attributed to the very small theoretical oxygen demand of ANO as 2.8 mg. Since the difference of oxygen demand from maximum to minimum of replicates was 0.6 mg and within the range of coefficient of variation (sd = 1.9 mg in basic respiration vessels obtained by studies in 2012), in this test it seems difficult to judge a validity of the test by using the degradation rate by oxygen demand. Hence, the validity of the test was assessed by LC analysis, IC analysis, ICP-AES analysis and DOC analysis by using their difference from maximum to minimum values of replicates.
- \*2 ICP-AES analysis was conducted at Chiba Testing Facility by the chef operator.
- \*3 In a preliminary test, niobium ion in test item degradation vessels formed (an) insoluble product(s). Under the testing condition, it is conjectured to form niobium oxide (V) and niobium hydroxide (V), and its dissolution tests were carried out by using acids and alkalis (conc, sulfuric acid, conc. nitric acid, conc. hydrochloric acid, aqua regia, inverse aqua regia and aqueous ammonia). According to the result that the dissolution was obtained by conc. sulfuric acid, the degradation product was assumed to be niobium hydroxide (V) (Chemical Unabridged Dictionary published by Tokyo Kagaku Dojin). In this study IR analysis was carried out to compare the spectra of the degradation product with that of standard sample of niobium hydroxide (V), resulting the confirmation of identity.
- \*4 Recorded as 0, because of minus value.

#### Introduction

As a part of safety assessment of a new substance ANO, a ready biodegradability test was conducted.

# Materials and test method

1. Test method

A ready biodegradation test was conducted in accordance with "Degradation Test of Chemical Substance Using Microorganisms"

(Yakushokuhatsu 0331 No. 7², Heisei 23, 03.29 Seikyoku No. 5², Kanhokihatus No. 110331009³, partly revised on 2 April 2012).

2. Test item, components\*5 after dissociation and standard substances

The notification was issued by 3 chiefs of the bureaus described below.

<sup>1.</sup> Ministry of Health, Labor and Welfare, Medicine food bureau

<sup>2.</sup> Ministry of Economy, Trade and Industry, Production industry of the bureau

<sup>3.</sup> Ministry of Environment, Synthesis environmental policy of the bureau

\*5 The test item dissociates to oxalate, ammonium and niobium ions in water. Each ion was quantified.

2.1 Test item

Name: Reaction mass of ammonium oxobis (ethanedioato)

bisaquo niobate (V) hydrates and ammonium hydrogen

ethanedioate ethanedioic acid dihydrate

Synonym: Ammonium Niobium Oxalate (abbreviation; ANO)

CAS Number:

Chemical formula: Component 1; NH<sub>4</sub>[NbO(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>•2H<sub>2</sub>O]•3H<sub>2</sub>O

Component 2;  $(NH_4C_2HO_4)_2 \cdot (C_2O_4H_2 \cdot 2H_2O)_2$ 

Molecular formula: Component 1;  $C_4H_{14}NNbO_{14}$ 

Component 2; C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>

Molecular weight: 368.25 (Component 1; 393.06, Component 2; 466.26)

Lot No.: AD/4638

Purity: 90% (Component 1; 70.2%, Component 2; 19.8%)

Impurity, Name and Content: H<sub>2</sub>O; 10%

Vapour pressure:

Water solubility: > 5 g/L

1-Octanol/water partition coefficient: Melting point: Boiling point: -

State at ambient temperature: ANO is white, water soluble crystalline Stability: Stable at ambient temperature

Storage condition: Ambient temperature

Solubility to solvents:

Identification: Identified by comparison of ANO IR spectrum (Fig.4) with

one measured by our lab. (Fig.5)

Stability under storage condition: Confirmed by IR spectra at the dates of start (Fig.6) and

terminate (Fig.7) of exposure

Stability under testing condition: Not required for degradation test

2.2 Components after dissociation

 $\begin{array}{cccc} Name: & Oxalate \ ion \\ Synonym: & C_2O_4{}^{2^{\circ}} \\ CAS \ No.: & - \\ Chemical \ formula: & C_2O_4{}^{2^{\circ}} \\ Molecular \ formula: & C_2O_4{}^{2^{\circ}} \\ Molecular \ weight: & 88.02 \\ \end{array}$ 

Name: Ammonium ion

Name: Niobium ion

Synonym: Nb5+ CAS No.: Chemical formula:  $Nb^{5+}$ Molecular formula:  $Nb^{5+}$ Molecular weight: 92.91

The test item was employed as a standard substance for oxalate ion and standard substances described in 2.3 Standard Substance were employed for ammonium ion and niobium ion.

#### 2.3 Standard substances

Name: Ammonium Chloride

Lot No.: B07753C (Special Grade, Kishida Chem. Japan)

99.7% Purity:

Quality, Identification, Stability: Specified as reagent chem.

Name: Niobium ICP Standard solution (NH<sub>4</sub>NbF<sub>6</sub> in H2O,

1000 mg/L Nb)

HC242206 ICP Standard solution, Merck Lot No.:

Purity: 1001 mg/L

Quality, Identification, Stability: Specified as reagent chem.

Name: Niobium hydroxide (V)

Lot No.: 63515 ICP standard solution, Mitsuwa Chemicals

Purity: 69.2 %

Specified as reagent chem. Quality, Identification, Stability:

# 3. Control substance

Name: Aniline Chemical formula



Molecular formula:  $C_6H_7N$ Molecular weight: 93.13

Lot No.: B81714C

Supplier: for Aniline Point, Kishida Chem., Japan

Purity: 99.9%

#### 4. Reagents

Dipotassium hydrogenphospha, Special grade chemical, Kishida Chem. Japan

Potassium dihydrogen-phosphate Special grade chemical, Kishida Chem. Japan Disodium hydrogen-phosphate 12 H<sub>2</sub>O Special grade chemical, Kishida Chem. Japan

Ammonium chloride Special grade chemical, Kishida Chem. Japan

Magnesium sulfite 7 H<sub>2</sub>O Special grade chemical, Kishida Chem. Japan Calcium chloride Special grade chemical, Kishida Chem. Japan Ferric chloride 6H<sub>2</sub>O Special grade chemical, Kishida Chem. Japan Soda lime Carbon dioxide absorbent, Kishida Chem. Japan Potassium hydrogen phthalate Special grade chemical, Kishida Chem. Japan

Sodium carbonate Special grade chemical, Kishida Chem. Japan Sodium bicarbonate Special grade chemical, Kishida Chem. Japan

Phosphoric acid Special grade chemical, Wako Pure Chemical Industries Ltd. Sulfuric acid Special grade chemical, Wako Pure Chemical Industries Ltd.

Acetonitrile LC grade, Nacalai Tesque, Inc.

2 mmol/L Methanesulfonate soln, for Ion chromatography, Wako Pure Chemical Ind. 1 mol/L NaOH soln. for Volumetric titration , Wako Pure Chemical Ind.

Water Ultra pure water by own equipment

# 5. Test organisms

Activated sludge: Standard activated sludge obtained on 11<sup>th</sup> Jan. 2013 from Chemicals Evaluation and Research Institute, Japan, has been cultured at Koei Techno's Laboratory at condition of temperature 25±2°C, dissolved oxygen >5 mg/L, pH 7.0±1.0 (Sludge No. 201211R).

Suspended solid of the activated sludge (sample taken on 27th Feb. 2013): 3763 mg/L

# 6. Test equipment

Coulometer: Ohkura Electric Co., Ltd. Model OM-2001A

Data sampler: Asahi Techneion Co., Ltd. DS-3

#### 7. Test condition

Test temperature: 25.0°C Amount of test liquid: 300 mL

Water of test: Ultra pure water by own equipment

# 8. Test concentration

Concentration of suspended solid of activated sludge: 30 mg/L

Concentration of test item: 100 mg/L

The following numbers were assigned for detector of coulometer;

1: Aniline, 2: Basic respiration, 3-5: Test item degradation, 6: Test item - water

# 9. Exposure period

28 days (from 27th Feb. 2013 to 27th March 2013

# 10. Check items of observation, measurement, inspection and analysis, and their frequency in this test

Observation, once a day, except holidays (9 days in total during the period): temperature, dissolving condition of test item, colour of test liquid, growth of activated sludge

Measurement of oxygen demand: automated continuous measurement for 28 days by coulometer.

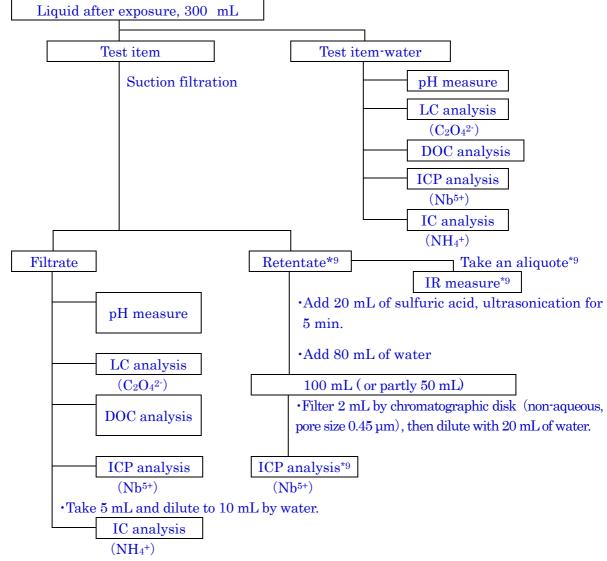
Measurement of pH after exposure test: immediately after taking from coulometer after exposure test.

Measurement of residual amount of test item and qualitative analysis of degradation product and its amount:

Measurement of residual amount of test item and qualitative analysis of degradation product and its amount: Test liquids after exposure were pre-treated and analyzed oxalate ion by Liquid Chromatography (LC), ammonium ion by Ion Chromatography (IC) and niobium ion\*7 by Inductivity Coupled Plasma – Atomic Emission Spectrometry (ICP – AES)\*6.

\*6: Analysis of ICP-AES was conducted at Chiba Testing Facility as one of multiple GLP facilities.

\*7: Niobium ion in test item vessels formed degradation product (niobium compound). An aliquot of sample was taken for qualitative analysis by IR. The rest was pre-treated for analysis of niobium ion and the degradation amount was determined.


Measurement of dissolved organic carbon (DOC) content in test liquids: analyzed test liquids by TOC analyzer after exposure, since the water solubility of the substance is higher than  $100 \text{ mg/L}^{*8}$ .

\*8: Visual check at the laboratory

#### 11. Measurement method of residual amount of test item and

11.1 Pretreatment of analysis sample

Vessels for basic respiration, test item and test item-water



\*9 Since niobium ion was found to be an insoluble substance (niobium compound) in test item vessel, a part was taken for qualitative analysis by IR

spectrophotometry. The rest was pre-treated for niobium ion measurement and the formation of decomposed substance (niobium ion) was measured.

#### 11.2 LC analysis condition $(C_2O_4^{2-})$

Equipment: Hitachi L-7000 System

Data processor: Hitachi D-7000

Column: COSMOSIL HILIC (5 µm, 4.6 mmI.D.×250 mm)

Column Temp: 30°C

Mobile phase: 0.1% phosphate (pH adjusted to 7.0 by 1 mol/L-NaOH): acetonitrile =

40:60(v:v)

Flow rate: 1.0 mL/min Detector: UV210 nm Detection sensitivity: 1.0 AU/V Injection volume: 30.0  $\mu$ L Analysis time: 20 min

## <Pre><Preparation of standard solutions>

Prepared standard solutions of 4 concentrations between 7.4 - 73.9 mg/L as  $C_2O_4$ <sup>2</sup>.

## 11.3 IC analysis condition (NH<sub>4</sub>+)

Equipment: Dionex Japan DX-120

Column: IonPac CS12A (4 mmI.D.×250 mm)

Mobile phase: 30 mmol/L- methane sulfonic acid aq. solution

Flow rate: 1.0 mL/min

Suppressor: CSRS (Recycling mode/current value 100 mA)

Injection volume 25 µL

Detector: Conductance (range 100 µS)

Analysis time: 6 min.

# < Preparation of standard solutions >

Prepared standard solutions of 4 concentrations between 1.03 – 10.30 mg/L as NH<sub>4</sub>+.

#### 11.4 ICP analysis condition (Nb5+)

Equipment: Shimadzu ICPS-7510

Wave length: 309.418 nm
High frequency output 1.2 kw
Amount of blowtorch: Low
Coolant gas 14.0 L/min
Plasma gas: 1.20 L/min
Carrier gas: 0.70 L/min

Purge gas: ON

#### <Preparation of standard solution>

Prepare standard solution of 5.0 and 25.0 mg/L as Nb5+ concentration diluted with water.

# 11.5 DOC analysis condition

Equipment: Shimadzu TOC-5000A

Range: AUTO
Injection volume: AUTO
Catalyst: TC catalyst

Carrier gas Air

Flow rate: 150 mL/min

#### <Pre><Preparation of standard solution>

(1) Standard Accurately weigh 0.21254 g of KH- phthalate, measure up to 100 mL with solution for TC: water. Further, dilute it 50 times with water and use it as standard solution.

(corresponding to 20.0 mg/L TC)

(2) Standard Accurately weigh 0.35005 g of NaH carbonate and ca. 0.44250 g of Na2 solution for IC: carbonate, measure up to 100 mL with water. Further, dilute it 50 times with

water and use it as standard solution (corresponding to 20.0 mg/L IC)

#### 11.6 Quantification limit

 $C_2O_4^{2-}$ ; 0.5 mg/L NH<sub>4</sub>+; 1.0 mg/L

#### 11.7 Recovery test

|                 | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> (%) | NH <sub>4</sub> +(%) | Nb <sup>5+</sup> (%) |
|-----------------|-------------------------------------------------|----------------------|----------------------|
| Test item       | 100                                             | 97                   | 102                  |
| Test item-water | 101                                             | 97                   | 104                  |

Based on the above result by direct quatification of liquids after exposure, the following were calculated as 100%, i.e., residual amount, residual rate, formation of decomposed substance and its rate, degradation rate and mass balance.

#### 12. Statistical Method for Data Analysis

- \* Regression equation and regression coefficient of LC and IC analysis calibration curves were calculated with least-squares method.
- \* Data processing of ICP analysis was carried out by attached data processor with the equipment.
- \* Data processing of DOC was carried out by attached data processor with the TOC analysis equipment.
- \* Residue amount of oxalate ion, residue amount of DOC (mass = mg, conc. = mg/L) and oxygen demand (mass = mg) wer expressed by rounding off to the first decimal place, residue amount of ammonium ion, niobium ion and degradation product (niobium compound) to the second decimal place, and residual rate, degradation (%) and compound formation (%) to whole number.
- \* Mean values are arithmetical mean.
- \* Rules for rounding of numerical values is round off.

#### 13. GLP compliance

This study was conducted to comply with:

"Standard on Testing Facility for Conducting Studies of New Chemical Substances, etc. (Yakushokuhatsu 0331 No. 8, Seikyoku No. 6 dated 29<sup>th</sup> March 2011, Kanpoki No. 110331010) Standard Operation Procedure (SOP) on Chemical Substance GLP.

## 14. Archiving

Any record, sample and data concerning this study are to be kept at storage facility of Koei Techno Co., Ltd. in accordance with GLP.

15. Environmental factor may have affected the quality assurance of the study. None.

#### **Test Result**

### 1. Validity of test \*10

Differences of direct quantifications in test item degradation vessels were found as 0% by LC, 3% by IC and 0% by ICP-AES, respectively from Table 1, and 3% by DOC from Table 3. These differences by direct quantifications are all less than 20% and the degradation of aniline calculated from oxygen demand value were more than 40% on Day 7 and more than 65% on Day 14 of the exposure, therefore, this study is considered to be valid.

\*10 Differences from the maximum to the minimum value of the degradation by LC, IC, ICP-AES and DOC analysis were employed for the judgment of validity on test (as shown \*1 page 5)

# 2. Degradation

Mean value of degradation of the test item on Day 28 measured by oxygen demand was 0% as shown in Table 1. And, the direct quantification was conducted by means of a Liquid Chromatography (LC) for oxalate ion, an Ion Chromatography (IC) for ammonium ion and an Inductive Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) for niobium ion, since the test item is dissociated to above ions in water.

According to the direct quantification, the % degradation of oxalate was mean 100% of the replicates, mean 2% for ammonium ion and mean 100% for niobium ion, respectively.

Table 1

|                       | No.  | Test vessel    | % Degrad      |        | Attached | Attached                   |  |
|-----------------------|------|----------------|---------------|--------|----------|----------------------------|--|
| Degradation           | 110. | lest vessel    |               | mean   | Table    | Figure                     |  |
| by                    | 3    | Test item      | -11           |        |          |                            |  |
| oxygen demand         | 4    | Test item      | 0             | 0      | AT 1     | AF 1                       |  |
|                       | 5    | Test item      | 11            |        | All      | Ar 1                       |  |
|                       | 6    | Inoculum blank | -             |        |          |                            |  |
| Degradation of        | No.  | Test vessel    | % Degradation |        | Attached | Attached                   |  |
| oxalate by            | NO.  | rest vesser    |               | mean   | Table    | Figure                     |  |
| direct quantification | 3    | Test item      | 100           |        |          | AF                         |  |
| *                     | 4    | Test item      | 100           | 100    | AT 2-1   | $2 \cdot 1 \sim 2 \cdot 7$ |  |
| (LC)                  | 5    | Test item      | 100           |        |          | 2 1 2 7                    |  |
| Degradation of        | No.  | Test vessel    | % Degrad      | lation | Attached | Attached                   |  |
| _                     | 110. | rest vesser    |               | mean   | Table    | Figure                     |  |
| ammonium ion by       | 3    | Test item      | 0             | 2      | AT 2-2   | AF                         |  |

| direct quantification           | 4               | Test item   | 3             |      |          | 2-8~           |
|---------------------------------|-----------------|-------------|---------------|------|----------|----------------|
| (IC)                            | 5               | Test item   | 2             |      |          | 2-14           |
| Degradation of                  | No. Test vessel |             | % Degradation |      | Attached | Attached       |
| niobium ion by                  | NO.             | rest vesser |               | mean | Table    | Figure         |
|                                 | 3               | Test item   | 100           |      |          | $\mathbf{AF}$  |
| direct quantification (ICP-AES) | 4               | Test item   | 100           | 100  | AT 2-3   | $2$ -15 $\sim$ |
| (ICP-AES)                       | 5               | Test item   | 100           |      |          | 2-19           |

Remarks: No. indicates a detector of coulometer.

# 3. Residual rate, degradation rate, formation rate and mass balance (Table 2)

The residual rate was found, mean 0% at test item vessels and 98% at inoculum blank for oxalate ion, mean 96% at test item vessels and 98% at test item-water for ammonium ion and mean 0% at test item vessels and 101% at inoculum blank for niobium ion. According to LC analysis no degradation products of more than 1% was detected.

Further, the formation rate of niobium hydroxide was mean 103% at test item vessels, and combined mass balance of niobium ion and niobium hydroxide was mean 103% at test item vessels.

Table 2

| Table 2                  |      | -              |          | _      |                |                                  |
|--------------------------|------|----------------|----------|--------|----------------|----------------------------------|
|                          | No.  | Test vessel    | % Resid  | due    | Attached       | Attached                         |
|                          |      |                |          | mean   | Table          | Figure                           |
| Residual rate of         | 3    | Test item      | 0        |        |                |                                  |
| oxalate                  | 4    | Test item      | 0        | 0      | AT 2-1         | 付図                               |
|                          | 5    | Test item      | 0        |        | A1 2 1         | $2 \text{-} 1 \sim 2 \text{-} 7$ |
|                          | 6    | Inoculum blank | 98       |        |                |                                  |
|                          | No.  | Test vessel    | 残存率      | (%)    | Attached       | Attached                         |
|                          | NO.  | rest vesser    |          | mean   | Table          | Figure                           |
| Residual rate of         | 3    | Test item      | 98       |        |                |                                  |
| ammonium                 | 4    | Test item      | 95       | 96     | AT 2-2         | 付図                               |
|                          | 5    | Test item      | 96       |        | A1 2-2         | 2-8~2-14                         |
|                          | 6    | Inoculum blank | 98       |        |                |                                  |
|                          | No.  |                | %Resid   | lue    | Attached       | Attached                         |
|                          |      | Test vessel    |          | mean   | Table          | Figure                           |
| Residual rate of         | 3    | Test item      | 0        |        |                | 付図                               |
| niobium ion              | 4    | Test item      | 0        | 0      | АД О О         | 1 1                              |
|                          | 5    | Test item      | 0        |        | AT 2-3         | 2-15~                            |
|                          | 6    | Inoculum blank | 101      |        |                | 2-19                             |
| Formation rate of        | No.  | m 1            | %Forma   | ition  | Attached       | Attached                         |
|                          | INO. | Test vessel    |          | mean   | Table          | Figure                           |
| niobium hydroxide<br>(V) | 3    | Test item      | 104      |        |                | 付図                               |
| (V)                      | 4    | Test item      | 103      | 103    | AT 2-3         | $2$ -15 $\sim$                   |
|                          | 5    | Test item      | 103      |        |                | 2-19                             |
|                          |      |                | %Mass ba | alance | A 44 a ala a d |                                  |
| Mass balance of          | No.  | Test vessel    |          |        | Attached       | Attached                         |
|                          |      |                |          | mean   | Table          | Figure                           |
| niobium ion and          | 3    | Test item      | 104      |        |                | Attached                         |
| niobium hydroxide        | 4    | Test item      | 103      | 103    | AT 2-3         | Figure                           |
|                          | 5    | Test item      | 103      |        |                | 2-15~                            |

# 4. Qualitative analysis of niobium ion degradation product in test item vessels

An IR analysis was conducted after the exposure of the test item degradation vessels to compare the spectrum with that of standard substance of niobium hydroxide (V), and the identification of both items was confirmed (Attached Figure 9 and 10).

#### 5. Residual amount of DOC

From Table 3 below, it is found that the residual DOC amount was mean 0.0 mg\*12 at test item vessels and 4.1 mg at test item-water vessel against theoretical one, and hence the residual rate was mean 0%\*13 and 95 %, respectively. The degradation rate derived from DOC was mean 104%.

Table 3

|     | 14010 0        |              |             |              |      |              |      |       |        |
|-----|----------------|--------------|-------------|--------------|------|--------------|------|-------|--------|
| No. | Test vessel    | Residual DOC |             | Residual (%) |      | %Degradation |      | Table | Figure |
| NO. | Test vesser    | (mg)         | mean        |              | mean |              | mean |       |        |
| 3   | Test item      | -0.1         |             | -2           |      | 102          |      |       |        |
| 4   | Test item      | -0.2         | $0.0^{*13}$ | -5           | 0*13 | 105          | 104  | AT 3  | AF 3   |
| 5   | Test item      | -0.2         |             | -5           |      | 105          |      |       |        |
| 6   | Inoculum blank | 4            | 1.1         |              | 95   |              | -    |       |        |

<sup>\*12:</sup> The value of test item was calculated by deducting value of the basic respiration vessel and test item-water by deducting that of ultra pure water blank.

# 6. IC residual rate and calculation of mineralization rate

Inorganic carbon (IC) residual rate at test item degradation vessels of DOC analysis were measured as mean 0.8 mg (seen in Table 4) and pH was declined towards alkaline side as 8.8 (seen in Table 6).

These results suggested that oxalate ion derived from the test item can be degradable by microbes and carbon dioxides generated by the degradation were to retain as IC in the test liquid since the test liquid was alkalinity and hence the IC residual amount wasn't reflected to the oxygen demand. A substantial mineralization rate of the test item by microbes was calculated as mean 18% by using an equation of "Mineralization rate = Degradation (%) by oxygen demand + IC residual rate (residual IC percentage against theoretical DOC) (%)". Further, if supplementarily explained, the mineralization rate of mean 18% could not reach to 60% as a criterion of ready biodegradability, and the reason of this lower rate than the expected was considered due to a wide variation of the measurement error attributable to very small values of ANO's theoretical oxygen demand 2.8 mg and the theoretical DOC 4.3 mg.

Table 4

| N   | m                           | %BOD<br>Degradation |      | %IC residual |                | %<br>Mineralization |                | A 1 170 11 |  |
|-----|-----------------------------|---------------------|------|--------------|----------------|---------------------|----------------|------------|--|
| No. | No. Test vessel Degradation |                     | rate |              | Mineralization |                     | Attached Table |            |  |
|     |                             |                     | mean |              | mean           |                     | mean           |            |  |
| 3   | Test item                   | -11                 |      | 14           |                | 3                   |                |            |  |
| 4   | Test item                   | 0                   | 0    | 21           | 18             | 21                  | 18             | 1 & 5      |  |
| 5   | Test item                   | 11                  |      | 19           |                | 30                  |                |            |  |

#### 7. Observation and measurement during and after the exposure

Observation carried out once a day during the exposure period was shown in Table 5.

Table 5

<sup>\*13</sup> The value obtained were minus figures and hence counted as 0.

| Temperature of coulometer  | 25.0°C through the period                                    |  |  |
|----------------------------|--------------------------------------------------------------|--|--|
| thermostatic bath          |                                                              |  |  |
| Dissolving condition       | Test item degradation vessel: insoluble on Day 0 - 28        |  |  |
| of test item               | Inoculum blanc vessel: soluble on Day 0 - 28                 |  |  |
|                            | Aniline degradation vessel: colourless on Day 0 - 28         |  |  |
| Colour of test liquid      | Test item degradation vessel: colourless on Day $0-28$       |  |  |
|                            | Inoculum blanc vessel: colourless on Day 0 - 28              |  |  |
| D1:6                       | Aniline degradation vessel: no proliferation on Day 0 - 7    |  |  |
| Proliferation of activated | : observed proliferation on day $8-28$                       |  |  |
| sludge                     | Test item degradation vessel: no proliferation on Day 0 - 28 |  |  |

Visual observation and result of pH measurement at the end of exposure were shown in Table 6.

Table 6

| End of exposure                   | Te         | st item ves | Inoculum blank |            |
|-----------------------------------|------------|-------------|----------------|------------|
| Coulometer detector No.           | 3          | 4           | 5              | 6          |
| Dissolving condition of test item | insoluble  | insoluble   | insoluble      | soluble    |
| Colour of test liquid             | colourless | colourless  | colourless     | colourless |
| Proliferation of activated sludge | No         | No          | No             | -          |
| pH at the end of exposure         | 8.55       | 8.97        | 8.97           | 3.65       |

8. Identification of test item and stability under the storage condition

Identification: IR spectra by sponsor and by Koei Techno were compared to find both are identical. (Attached Figure 4 and 5)

Stability: IR measurement on the day of start and end of exposure were carried out and it is confirmed the test item was stable during the test period. (Attached Figure 6 and 7)

#### Discussion

The difference of both extremes in % degradation of replicates calculated by the oxygen demand was 22% as seen in Table 1, and this value deviates from the allowance of less than 20% as specified in SOP. The reason of this deviation is speculated by a wide variation for the measurement of oxygen demand attributed to the very small theoretical oxygen demand of ANO as 2.8 mg. Since the difference of both extremes in oxygen demand of replicates was 0.6 mg and within the range of coefficient of variation (sd = 1.9 mg in basic respiration vessels obtained by studies in 2012), in this test it seems difficult to judge a validity of the test by using the degradation rate by oxygen demand. Therefore, the validity of the test was assessed by LC analysis, IC analysis, ICP-AES analysis and DOC analysis by using their difference of both extreme values of replicates.

In a preliminary test, niobium ion in test item degradation vessels formed (an) insoluble product(s). Under the testing condition, it is conjectured to form niobium oxide (V) and niobium hydroxide (V), and its dissolution tests were carried out by using acids and alkalis (conc, sulfuric acid, conc. nitric acid, conc. hydrochloric acid, aqua

regia, inverse aqua regia and aqueous ammonia). According to the result that the dissolution was obtained by conc. sulfuric acid, the insoluble substance was assumed to be niobium hydroxide (V) (Chemical Unabridged Dictionary published by Tokyo Kagaku Dojin). In this study IR analysis was carried out to compare the spectra of the insoluble substance with that of standard sample of niobium hydroxide (V), resulting the confirmation of identity.

While, the quantification of niobium ion was conducted by ICP-AES after a pretreatment of the test liquid by conc. sulfuric acid.

The generation rate of niobium hydroxide (V) was mean 103% in the test item degradation vessel, and the mass balance of niobium ion and niobium hydroxide in total was 103% in the test item degradation vessel.

The residual rate of DOC was mean 0%\*4 in test item degradation vessels, while 95% in inoculum blank, and degradation was obtained as mean 104%. And, residual amount of inorganic carbon (IC) was mean 0.8 mg in test item degradation vessels, and the shift of pH towards alkaline was observed, as mean pH8.83.

From the results described above, it is considered that oxalate ion derived from the test item can be degradable by microbes and carbon dioxides generated by the degradation were to retain as IC in the test liquid since the test liquid was alkalinity and hence the IC residual amount wasn't reflected to the oxygen demand.

A substantial mineralization rate of the test item by microbes was calculated as mean 18% by using an equation of "Mineralization rate = Degradation (%) by oxygen demand + IC residual rate (residual IC percentage against theoretical DOC) (%)". Further, supplementarily explained, the mineralization rate of mean 18% could not reach to 60% as a criterion of ready biodegradability, and the reason of this lower rate than the expected was considered due to a wide variation of the measurement error attributable to very small values of ANO's theoretical oxygen demand 2.8 mg and the theoretical DOC 4.3 mg.

From analysis results of LC and DOC, it is considered that oxalate as an organic component of ANO is biodegradable and completely mineralized under the present test condition. However, it is also considered that ammonium ion remains as unchanged form, and niobium ion remains as niobium hydroxide (V).

It is concluded that ANO is not ready biodegradable under the test condition.

#### Conclusion

It is concluded that ANO is not ready biodegradable under the test condition.

#### **Appendices**

Attached Table 1 Analysis data of oxygen demand Attached Table 2-1 Residual amount of  $C_2O_4^{2^-}$  by LC analysis Attached Table 2-2 Residual amount of  $NH_4^+$  by IC analysis Attached Table 2-3 Residual amount of by ICP analysis and formation of niobium hydroxide (V) Attached Table 3 Analysis data of DOC Attached Table 4 Residual rate of IC

| Attached Figure 1                                             | Oxygen demand curve                                                                                      |  |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Attached Figure 2-1                                           | Direct quantification of C <sub>2</sub> O <sub>4</sub> <sup>2</sup> : calibration curve and result by LC |  |  |  |  |
| Attached Figure 2-2                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2</sup> : chromatogram of standard liquid                 |  |  |  |  |
| Attached Figure 2-3                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2</sup> : chromatogram of standard liquid                 |  |  |  |  |
| Attached Figure 2-4                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2</sup> : chromatogram of standard liquid                 |  |  |  |  |
| Attached Figure 2-5                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2</sup> : chromatogram of residual amount                 |  |  |  |  |
| Attached Figure 2-6                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> : chromatogram of residual amount                |  |  |  |  |
| Attached Figure 2-7                                           | LC analysis C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> : chromatogram of residual amount                |  |  |  |  |
| Attached Figure 2-8                                           | Direct quantification of NH <sub>4</sub> +: calibration curve and result by IC                           |  |  |  |  |
| Attached Figure 2-9                                           | IC analysis of NH <sub>4</sub> +: chromatogram of standard liquid                                        |  |  |  |  |
| Attached Figure 2-10                                          | IC analysis of NH <sub>4</sub> +: chromatogram of standard liquid                                        |  |  |  |  |
| Attached Figure 2-11                                          | IC analysis of NH <sub>4</sub> +: chromatogram of standard liquid                                        |  |  |  |  |
| Attached Figure 2-12                                          | IC analysis of NH <sub>4</sub> +: chromatogram of residual amount                                        |  |  |  |  |
| Attached Figure 2-13                                          | IC analysis of NH <sub>4</sub> +: chromatogram of residual amount                                        |  |  |  |  |
| Attached Figure 2-14                                          | IC analysis of NH <sub>4</sub> +: chromatogram of residual amount                                        |  |  |  |  |
| Attached Figure 2-15                                          | ICP analysis of Nb5+: result of standard liquid                                                          |  |  |  |  |
| Attached Figure 2-16                                          | ICP analysis of Nb5+: residual amount and formation of niobium                                           |  |  |  |  |
|                                                               | hydroxide (V)                                                                                            |  |  |  |  |
| Attached Figure 2-17                                          | ICP analysis of Nb5+: residual amount and formation of niobium                                           |  |  |  |  |
|                                                               | hydroxide (V)                                                                                            |  |  |  |  |
| Attached Figure 2-18                                          | ICP analysis of Nb5+: residual amount and formation of niobium                                           |  |  |  |  |
|                                                               | hydroxide (V)                                                                                            |  |  |  |  |
| Attached Figure 2-19                                          | ICP analysis of Nb5+: result of residual amount                                                          |  |  |  |  |
| Attached Figure 3                                             | DOC analysis result                                                                                      |  |  |  |  |
| Attached Figure 4                                             | IR spectrum of ANO for identification (provided by the sponsor)                                          |  |  |  |  |
| Attached Figure 5                                             | IR spectrum of ANO for identification (measured at Koei Techno)                                          |  |  |  |  |
| Attached Figure 6                                             | IR spectrum of ANO for stability check (at the final day of                                              |  |  |  |  |
|                                                               | exposure)                                                                                                |  |  |  |  |
| Attached Figure 7                                             | IR spectrum of ANO for stability check (at the final day of                                              |  |  |  |  |
|                                                               | exposure)                                                                                                |  |  |  |  |
| Attached Figure 8                                             | Substance identification and stability under storage condition                                           |  |  |  |  |
| Attached Figure 9                                             | IR spectrum of niobium hydroxide (V) standard sample (at the                                             |  |  |  |  |
|                                                               | final day of exposure)                                                                                   |  |  |  |  |
| Attached Figure 10                                            | IR spectrum: qualitative analysis of niobium hydroxide (V)                                               |  |  |  |  |
| (Data obtained on the final day of exposure, 27th March 2013) |                                                                                                          |  |  |  |  |

#### 付表 1 酸素消費量分析測定表

|     |         |                | 理論的                | 7                 | 日        |    | 14                | 4日 |           | 21                | 日   |           | 28                | 3日       |   |
|-----|---------|----------------|--------------------|-------------------|----------|----|-------------------|----|-----------|-------------------|-----|-----------|-------------------|----------|---|
| No. | 試験区     | 添加量<br>A(mg)*1 | 酸素<br>消費量<br>B(mg) | 酸素<br>消費量<br>(mg) | 分解<br>C( |    | 酸素<br>消費量<br>(mg) |    | 解度<br>(%) | 酸素<br>消費量<br>(mg) |     | 解度<br>(%) | 酸素<br>消費量<br>(mg) | 分解<br>C( |   |
| 1   | アニリン分解区 | 30.4           | 91.4               | 38.5              | 40       | 0  | 68.2              | 6  | 9         | 72.5              | 7   | 2         | 73.3              | 7:       | 2 |
| 2   | 基礎呼吸区   | _              | _                  | 2.0               | _        | -  | 4.8               | -  | _         | 6.9               | -   | -         | 7.1               | _        | , |
| 3   | 被験物質分解区 | 30.4           | 2.8                | 3.3               | 46       |    | 5.3               | 18 |           | 6.6               | -11 |           | 6.8               | -11      |   |
| 4   | 被験物質分解区 | 30.4           | 2.8                | 3.3               | 46       | 50 | 5.3               | 18 | 22        | 6.9               | 0   | 0*2       | 7.1               | 0        | 0 |
| 5   | 被験物質分解区 | 30.4           | 2.8                | 3.6               | 57       |    | 5.6               | 29 |           | 7.1               | 7   |           | 7.4               | 11       |   |
| 6   | 被験物質-水区 | 30.4           | _                  | 0.0               | _        | -  | 0.0               | -  |           | 0.0               | -   | -         | 0.0               | -        | - |

No.: クーロメータの検出部No.

- \*1 被験物質は純度90%にて換算した。
- \*2 マイナス値のため、0とした。

#### B: 理論的酸素消費量[TOD] (mg)

(ANO)以下に示す成分1と成分2のTODの合計

(成分1) $C_4H_{14}NNbO_{14} \rightarrow NH_4^+ + Nb(OH)_5 + 2C_2H_2O_4 + 5H_2O_4$ 

上記の通り、被験物質分解区において、成分1は、 $NH^+$ (アンモニウムイオン)、 $Nb(OH)_5$ (水酸化ニオブ(V))、 $C_0H_0O_4$ (シュウ酸)及び $H_0O(\Lambda)$ となり、その中で、酸素消費に関与するのは $C_0H_0O_4$ (シュウ酸)のみとなる。

よって、TODの算出は以下となる。

 $2C_2H_2O_4 + O_2 \rightarrow 4CO_2 + 2H_2O$ 

被験物質添加量(mg)×(成分1の含量(%))/90×O<sub>2</sub> / C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub>

 $=A \times 70.2 / 90 \times 32.00 / 393.06$ 

(成分2) C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>→ 2NH<sub>4</sub><sup>+</sup>+4C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>+2H<sub>2</sub>O

上記の通り、被験物質分解区において、成分2は、 $NH_4$ <sup>+</sup>(アンモニウムイオン)、 $C_2H_2O_4$ (シュウ酸)及び  $H_2O(\Lambda)$ となり、その中で、酸素消費に関与するのは $C_2$ H $_2$ O $_4$ (シュウ酸)のみとなる。

よって、TODの算出は以下となる。

 $4C_2H_2O_4 + 2O_2 \rightarrow 8CO_2 + 4H_2O$ 

被験物質添加量(mg)×(成分2の含量(%))/ $90\times2O_2$ /  $C_8H_{22}N_2O_{20}$ 

 $=A \times 19.8 / 90 \times 64.00 / 466.26$ 

(ANO)被験物質添加量(mg)×(成分1の含量(%))/90× $O_2$  /  $C_4H_{14}$ NNb $O_{14}$  + 被験物質添加量(mg)×(成分2の含量(%))/90× $2O_2$  /  $C_8H_{22}$ N $_2$ O $_2$  = =  $A \times 70.2$  /  $90 \times 32.00$  / 393.06 +  $A \times 19.8$  /  $90 \times 64.00$  / 466.26

(アニリン)  $C_6H_7N + 8.75O_2 \rightarrow 6CO_2 + 3.5H_2O + NO_2$ 添加量(mg)  $\times 8.75O_2$  / $C_6H_7N = A \times 280.00$  / 93.13

#### C:酸素消費量からの分解度(%)

 $(BOD-b) \times 100 / TOD$ 

# ここに、

BOD: アニリン及び被験物質分解区の生物化学的酸素消費量「測定値」(mg)

b: 基礎呼吸区の酸素消費量[測定値] (mg)

TOD: アニリン及び被験物質が完全に酸化された場合に必要とされる理論的酸素消費量 「計算値」(mg)

# 付表 2-1 LCによるC<sub>2</sub>O<sub>4</sub><sup>2-</sup>残留量分析測定表

| No. | 試験区     | 被験物質<br>添加量<br>(mg)*1 | 理論C <sub>2</sub> O <sub>4</sub> <sup>2-</sup><br>添加量<br>A(mg) | AREA    | 被験物質濃度<br>B(mg/L)*2 | 液量<br>C(mL) | 残留量<br>D(mg) |     | 残存<br>E( |   | 分角<br>F( | 军度<br>%) |
|-----|---------|-----------------------|---------------------------------------------------------------|---------|---------------------|-------------|--------------|-----|----------|---|----------|----------|
|     |         | _                     | _                                                             | 120533  | 7.4                 | _           | _            |     | _        | - | _        | _        |
|     | 標準液     | —                     | —                                                             | 303106  | 18.5                | _           | —            |     | _        | - | _        | _        |
|     | 宗中似     | —                     | —                                                             | 598150  | 37.0                | _           | —            |     | -        | - | _        | _        |
|     |         | _                     | _                                                             | 1212758 | 73.9                | _           | _            |     | _        | - | ı        | _        |
| 3   | 被験物質分解区 | 30.4                  | 15.7                                                          | 不検出     | 0.0                 | 300         | 0.0          |     | 0        |   | 100      |          |
| 4   | 被験物質分解区 | 30.4                  | 15.7                                                          | 不検出     | 0.0                 | 300         | 0.0          | 0.0 | 0        | 0 | 100      | 100      |
| 5   | 被験物質分解区 | 30.4                  | 15.7                                                          | 不検出     | 0.0                 | 300         | 0.0          |     | 0        |   | 100      |          |
| 6   | 被験物質-水区 | 30.4                  | 15.7                                                          | 837632  | 51.2                | 300         | 15.4         |     | 9        | 8 | -        | -        |

注)No.: クーロメータ検出部のNo.

- \*1 被験物質は純度90%にて換算した。
- \*2 定量限界未満は0.0とした。

A: 理論C<sub>2</sub>O<sub>4</sub><sup>2-</sup>添加量 (成分1)C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub> (成分2)C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>

被験物質添加量(mg)×(成分1の含量(%))/90×2C<sub>2</sub>O<sub>4</sub><sup>2-</sup>/C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub>

- + 被験物質添加量(mg)×(成分2の含量(%))/90×4 $C_2O_4^{2-}/C_8H_{22}N_2O_{20}$
- = 被験物質添加量(mg)×70.2/90×176.04/393.06
  - + 被験物質添加量(mg)×19.8/90×352.08/466.26

D: 残留量(mg) = B×C / 1000

E: 残存率(%) = D×100/A

F: 分解度(%)=  $(dh-dg) \times 100 / dh$ 

dg: 被験物質分解区の残留量(mg) dh: 被験物質-水区の残留量(mg)

# 付表 2-2 ICによるNH<sub>4</sub><sup>+</sup>残留量分析測定表

| No. | 試験区     | 被験物質<br>添加量<br>(mg)*1 | 理論NH <sub>4</sub> <sup>+</sup><br>添加量<br>A(mg) | AREA    | NH <sub>4</sub> <sup>+</sup> 濃度<br>B(mg/L) | 液量<br>C(mL) | 残留<br>D(r |      | 残有<br>E( |    | 分角<br>F( |   |
|-----|---------|-----------------------|------------------------------------------------|---------|--------------------------------------------|-------------|-----------|------|----------|----|----------|---|
|     |         | _                     |                                                | 181859  | 1.03                                       |             | _         |      | -        | _  | -        | - |
|     | 標準液     | _                     |                                                | 300150  | 2.06                                       | 1           | _         | -    | -        |    | -        | - |
|     | 际中似     | _                     | 1                                              | 650003  | 5.15                                       | ı           |           | -    | -        | -  | -        | - |
|     |         | _                     |                                                | 1181925 | 10.30                                      | _           | _         | -    | -        | _  | _        | - |
| 3   | 被験物質分解区 | 30.4                  | 1.61                                           | 567218  | 2.61                                       | 10          | 1.57      |      | 98       |    | 0        |   |
| 4   | 被験物質分解区 | 30.4                  | 1.61                                           | 561293  | 2.55                                       | 10          | 1.53      | 1.55 | 95       | 96 | 3        | 2 |
| 5   | 被験物質分解区 | 30.4                  | 1.61                                           | 563021  | 2.57                                       | 10          | 1.54      |      | 96       |    | 2        |   |
| 6   | 被験物質-水区 | 30.4                  | 1.61                                           | 361822  | 2.62                                       | 10          | 1.        | 57   | 9        | 8  | -        | - |

注) No.: クーロメータ検出部のNo.

\*1 被験物質は純度90%にて換算した。

A: 理論NH<sub>4</sub>+添加量

(成分1)C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub>

(成分2)C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>

被験物質添加量(mg)×(成分1の含量(%))/90× $NH_4^+/C_4H_{14}NNbO_{14}$ 

- + 被験物質添加量(mg)×(成分2の含量(%))/90×2NH<sub>4</sub>+/C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>
- = 被験物質添加量(mg)×70.2/90×18.04/393.06
  - + 被験物質添加量(mg)×19.8/90×36.08/466.26
- D: 残留量(mg) = B×C/1000×(300/5)\*2 \*2 暴露試験終了液300 mLから5 mL採取し、水で10 mLに希釈して測定した。
- E: 残存率(%) = D×100/A
- $F: 分解度(%) = (dh-dg) \times 100/dh$

dg: 被験物質分解区の残留量(mg) dh: 被験物質-水区の残留量(mg)

付表 2-3 ICPによるNb5+残留量及び水酸化ニオブ(V)の生成量分析測定表

# <Nb<sup>5+</sup>残留量>

| No. | 試験区         | 被験物質<br>添加量<br>(mg)*1 | 理論Nb <sup>5+</sup><br>添加量<br>A(mg) | Nb <sup>5+</sup><br>濃度<br>B(mg/L) | 液量<br>C(mL) | 残留量<br>D(mg) | 残存<br>E( |    | 分角<br>F( |     |
|-----|-------------|-----------------------|------------------------------------|-----------------------------------|-------------|--------------|----------|----|----------|-----|
|     | 標準液         | _                     |                                    | 5.00                              | _           | _            | _        | -  |          | -   |
|     | 际中似         | _                     | 1                                  | 25.00                             | 1           | _            | _        |    | _        |     |
| 3   | 被験物質分解区(ろ液) | 30.4                  | 5.60                               | 0.03                              | 300         | 0.01         | 0        |    | 100      |     |
| 4   | 被験物質分解区(ろ液) | 30.4                  | 5.60                               | 0.03                              | 300         | 0.01 0.01    | . 0      | 0  | 100      | 100 |
| 5   | 被験物質分解区(ろ液) | 30.4                  | 5.60                               | 0.03                              | 300         | 0.01         | 0        |    | 100      |     |
| 6   | 被験物質-水区     | 30.4                  | 5.60                               | 18.84                             | 300         | 5.65         | 10       | )1 | _        | -   |

#### <水酸化ニオブ(V)の生成量>

| No. | 試験区         | 被験物質<br>添加量<br>(mg)*1 | 理論Nb <sup>5+</sup><br>生成量A'<br>(mg) | Nb <sup>5+</sup><br>濃度<br>B'(mg/L) | 液量 C'<br>(mL) | 生成』<br>(m |      | 生成至(% |     |
|-----|-------------|-----------------------|-------------------------------------|------------------------------------|---------------|-----------|------|-------|-----|
|     | 標準液         | _                     |                                     | 5.00                               | _             | I         |      | _     | _   |
|     | 际平似         | _                     |                                     | 25.00                              | _             | l         |      | -     | _   |
| 3   | 被験物質分解区(ろ残) | 30.4                  | 5.60                                | 5.81                               | 20            | 5.81      |      | 104   |     |
| 4   | 被験物質分解区(ろ残) | 30.4                  | 5.60                                | 5.79                               | 20            | 5.79      | 5.78 | 103   | 103 |
| 5   | 被験物質分解区(ろ残) | 30.4                  | 5.60                                | 5.74                               | 20            | 5.74      |      | 103   |     |

<被験物質分解区における $Nb^{5+}$ と水酸化ニオブ(V)の物質収支>

| _ \ // | XiiX iiX 貝刀 /iF iC iC iO i / i C | 110 C/11D                      | ( <u>                                      </u> | <u> </u> | ~ /   |
|--------|----------------------------------|--------------------------------|-------------------------------------------------|----------|-------|
| No.    | 試験区                              | Nb <sup>5+</sup><br>残存率<br>(%) | 水酸化<br>ニオフ゛<br>生成率(%)                           | 物質収      | (支(%) |
| 3      | 被験物質分解区                          | 0                              | 104                                             | 104      |       |
| 4      | 被験物質分解区                          | 0                              | 103                                             | 103      | 103   |
| 5      | 被験物質分解区                          | 0                              | 103                                             | 103      |       |

- 注) No.: クーロメータ検出部のNo.
- \*1 被験物質は純度90%にて換算した。
- A: 理論 $Nb^{5+}$ 添加量: (成分1) $C_4H_{14}NNbO_{14}$  被験物質添加量(mg) × (成分1)含量(%)/90× $Nb^{5+}$ / $C_4H_{14}NNbO_{14}$ 
  - = 被験物質添加量×70.2/90×92.91/393.06
- D: 残留量(mg) = B×C/1000
- E: 残存率(%) = D×100/A
- $F: 分解度(%) = (dh-dg) \times 100/dh$

dg:被験物質分解区の残留量(mg)d、h:被験物質-水区の残留量(mg)

A': 理論 $Nb^{5+}$ 生成量(水酸化ニオブ (V)を前処理し、 $Nb^{5+}$ として測定する。) (成分1) $C_4H_{14}NNbO_{14}$ 

被験物質添加量(mg)×(成分1)含量(%)/90×Nb<sup>5+</sup>/C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub>

- = 被験物質添加量×70.2/90×92.91/393.06
- D': 被験物質分解区No. 3;生成量(mg) = B' $\times$ C'/1000 $\times$ (50/2) $\times$ 2\*2 被験物質分解区No. 4及びNo. 5;生成量(mg) = B' $\times$ C'/1000 $\times$ (100/2)\*3
  - \*2 被験物質分解区No.3は、暴露試験終了液全量をろ過したろ残の半分を硫酸10 mLに溶解後、水40 mLを加えて50 mLとし、その溶液から2 mL採取し、水で20 mLに希釈して測定した。
  - \*3 被験物質分解区は、暴露試験終了液全量をろ過したろ残を硫酸20 mLに溶解後、 水80 mLを加えて100 mLとし、その溶液から2 mL採取し、水で20 mLに希釈して測定した。
- E': 生成率(%) = D'×100/A'

被験物質分解区における物質収支: Nb5+との残存率(%)+水酸化ニオブ(V)の生成率(%)

# 付表 3 DOC分析測定表

| No. | 試験区     | 被験物質<br>添加量<br>A(mg) | 理論<br>DOC量<br>B(mg) | TC濃度*1<br>(mg/L) | IC濃度 <sup>*1</sup><br>(mg/L) | DOC<br>濃度<br>C(mg/L) | DOC<br>量<br>D(mg) | ブランクとの<br>差 E(mg)*2 | DC<br>残存<br>F(s | 率   | DC<br>分角<br>G( | <b>军度</b> |
|-----|---------|----------------------|---------------------|------------------|------------------------------|----------------------|-------------------|---------------------|-----------------|-----|----------------|-----------|
|     | 標準液     | _                    | _                   | 20.0             | 20.0                         | _                    | _                 | _                   | _               | -   | _              | _         |
|     | 試験使用超純水 | _                    | _                   | 0.2              | 0.0                          | 0.2                  | 0.1               | _                   | _               | -   | _              | _         |
| 2   | 基礎呼吸区   | _                    | _                   | 1.5              | 0.3                          | 1.2                  | 0.4               |                     | _               | -   | _              | _         |
| 3   | 被験物質分解区 | 30.4                 | 4.3                 | 3.3              | 2.4                          | 0.9                  | 0.3               | -0.1                | -2              |     | 102            |           |
| 4   | 被験物質分解区 | 30.4                 | 4.3                 | 4.0              | 3.3                          | 0.7                  | 0.2               | -0.2                | -5              | 0*3 | 105            | 104       |
| 5   | 被験物質分解区 | 30.4                 | 4.3                 | 3.9              | 3.1                          | 0.8                  | 0.2               | -0.2                | -5              |     | 105            |           |
| 6   | 被験物質-水区 | 30.4                 | 4.3                 | 14.1             | 0.0                          | 14.1                 | 4.2               | 4.1                 | 98              | 5   | _              |           |

- 注) No.:クーロメータ検出部のNo.
- \*1 TC濃度及びIC濃度は、DOC測定チャートのMN(平均)値を四捨五入し、小数第一位に丸めた値を採用した。
- \*2被験物質分解区は基礎呼吸区を、被験物質-水区は試験使用超純水ブランクを差し引いた値。
- \*3 マイナス値のため0とした。

#### B:理論DOC量(mg)

(ANO)

(成分1)添加量×(成分1の含量(%))/90× $C_4/C_4H_{14}NNbO_{14}$ 

- +(成分2)添加量×(成分2の含量(%))/90×C<sub>8</sub>/C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>
- $= A \times 70.2/90 \times 48.04/393.06$ 
  - $+ A \times 19.8/90 \times 96.08/466.26$
- C:DOC濃度(mg/L) = TC濃度 IC濃度
- D:DOC量(mg) = C×300 / 1000
- F:DOC残存率(%) = E×100 / B
- G:DOCによる分解度(%) = (Eb Es)×100 / Eb

#### ここに、

Es:E(被験物質分解区) = D(被験物質分解区) - D(基礎呼吸区)

Eb:E(被験物質-水区) = D(被験物質-水区) - D(試験使用超純水)

# 付表 4 IC残存率

| No. | 試験区     | 被験物質<br>添加量<br>A(mg) | 理論 DOC<br>量B(mg) | IC濃度 <sup>*1</sup><br>C(mg/L) | IC<br>残留量<br>D(mg) | ブランク<br>E(m |     | [(<br>残存<br>F( | 字率 |
|-----|---------|----------------------|------------------|-------------------------------|--------------------|-------------|-----|----------------|----|
|     | 標準液     | _                    | _                | 20.0                          | _                  | _           | -   | -              |    |
|     | 試験使用超純水 | _                    | _                | 0.0                           | 0.0                | _           | -   | _              | _  |
| 2   | 基礎呼吸区   |                      | _                | 0.3                           | 0.1                | _           | -   | _              | _  |
| 3   | 被験物質分解区 | 30.4                 | 4.3              | 2.4                           | 0.7                | 0.6         |     | 14             |    |
| 4   | 被験物質分解区 | 30.4                 | 4.3              | 3.3                           | 1.0                | 0.9         | 0.8 | 21             | 18 |
| 5   | 被験物質分解区 | 30.4                 | 4.3              | 3.1                           | 0.9                | 0.8         |     | 19             |    |
| 6   | 被験物質-水区 | 30.4                 | 4.3              | 0.0                           | 0.0                | 0.          | 0   | (              | )  |

- 注)No.:クーロメータ検出部のNo.
- \*1 IC濃度は、DOC測定チャートのMN(平均)値を四捨五入し、小数第一位に丸めた値を採用した。
- \*2被験物質分解区は基礎呼吸区を、被験物質-水区は試験使用超純水ブランクを差し引いた値。

# B:理論DOC量(mg)

(ANO)

(成分1)添加量×(成分1の含量(%))/90×C<sub>4</sub>/C<sub>4</sub>H<sub>14</sub>NNbO<sub>14</sub>

- +(成分2)添加量×(成分2の含量(%))/90×C<sub>8</sub>/C<sub>8</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub>
- $= A \times 70.2/90 \times 48.04/393.06$ 
  - $+ A \times 19.8/90 \times 96.08/466.26$

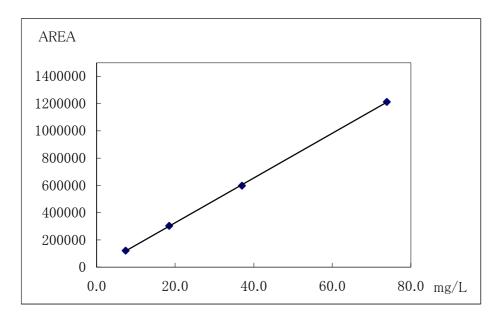
D:IC残留量(mg) = C×300 / 1000

F:IC残存率(%) = E/B×100

付表 5 無機化率

| No. | 試験区     | -   | BOD分解度<br>A(%) |    | 存率<br>%) |    | 化率<br>(%) |
|-----|---------|-----|----------------|----|----------|----|-----------|
| 3   | 被験物質分解区 | -11 |                | 14 |          | 3  |           |
| 4   | 被験物質分解区 | 0   | 0              | 21 | 18       | 21 | 18        |
| 5   | 被験物質分解区 | 11  |                | 19 |          | 30 |           |

注) No.: クーロメータ検出部のNo.


A: 付表 1のデータを採用 B: 付表 4のデータを採用

C: A+B

付図 1 酸素消費量曲線

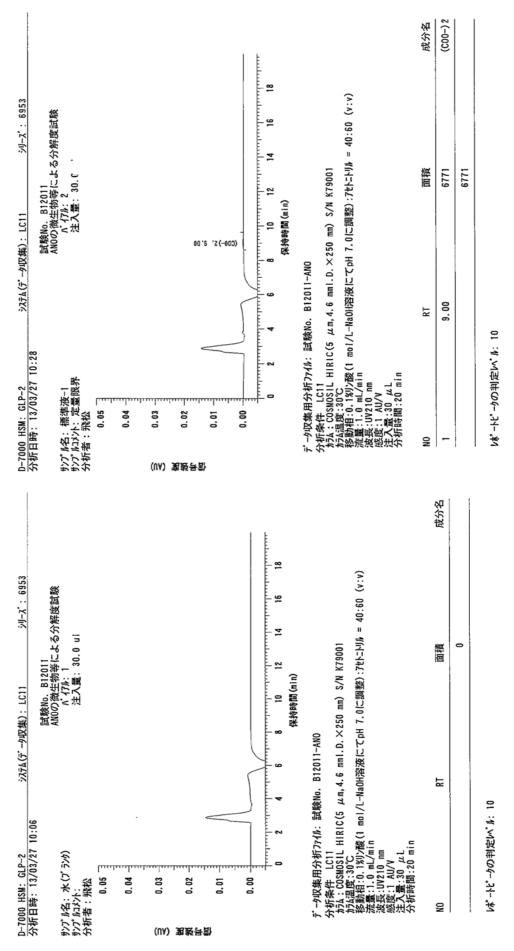
| A-4   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : B12                                   | 3      |        | BOD     | (gm)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|--------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 条件:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 装置番号: A-4                               | 武 率 名  |        | 14日     | 21日   | 28⊟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 新物質過度: 100 (mg/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (条件:                                    | 汚泥+アニリ | 38.5   | 68.2    | 72.5  | 73.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) (2) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) (1187) |                                         | 基 礎 呼  | 2.0    | 4.8     | 6.9   | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 後期 時: 25 ± 1°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |        | 3.3    | 5.3     | 6.6   | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>※ 期 間: 28日(2/27~3/27,2013)</li> <li>「日本・散験物質 3.6 5.6 7.1</li> <li>「100 0.0</li> <li>「100 0.0</li> <li>「200 0.0</li> <li>「200 0.0</li> <li>「200 0.0</li> <li>「200 0.0</li> <li>「200 0.0</li> <li>[200 0.0</li> <li< td=""><td>後 薫 民:</td><td></td><td>3.3</td><td>5.3</td><td>6.9</td><td>7.1</td></li<></ul>                                                                                                                                                                                                                                                                                      | 後 薫 民:                                  |        | 3.3    | 5.3     | 6.9   | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 養 期 問: 28日(2/27~3/27,20                 |        | 3.6    | 5.6     | 7.1   | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 水 +    | 0.0    | 0.0     | 0.0   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14   14   21   28   13   13   14   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |        |         |       | Image: section of the content of the |
| 14   14   21   28   11   18   11   18   11   18   11   18   11   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   18   | 20-                                     |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |        | A      |         |       | -5243<br>-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 氏名 形花                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 14 期 ( | 21     | -       | -     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (3032)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        | 平成之行。子 | 11-2/11 | 氏名 飛花 | ١,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |        |        |         |       | 130327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

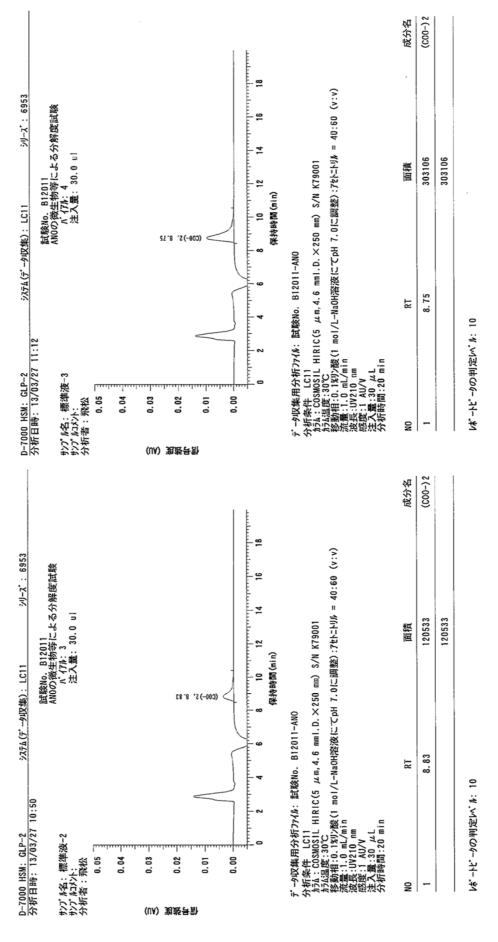
付図 2-1 C<sub>2</sub>O<sub>4</sub><sup>2-</sup>直接定量 LC分析検量線及び分析測定結果



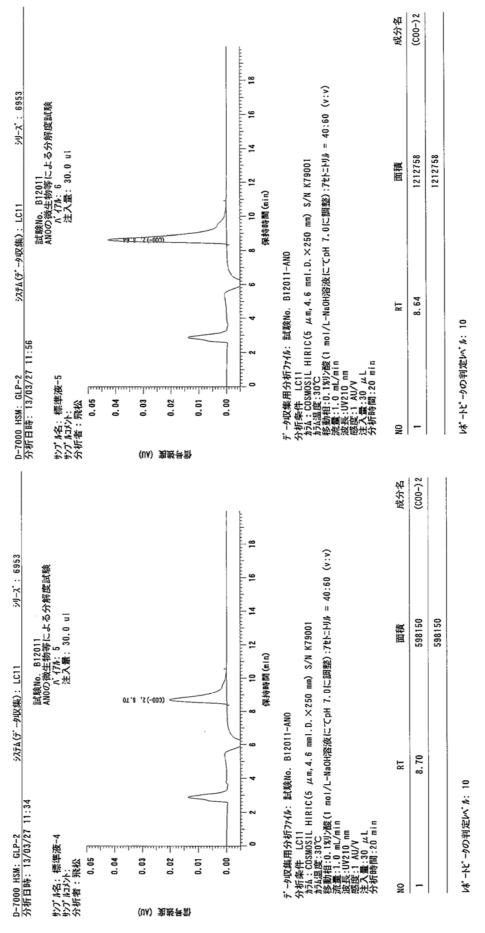
### (検量線)

|       | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup><br>濃度(mg/L) | AREA    |
|-------|---------------------------------------------------------|---------|
| 標準液-2 | 7.4                                                     | 120533  |
| 標準液-3 | 18.5                                                    | 303106  |
| 標準液-4 | 37.0                                                    | 598150  |
| 標準液-5 | 73.9                                                    | 1212758 |

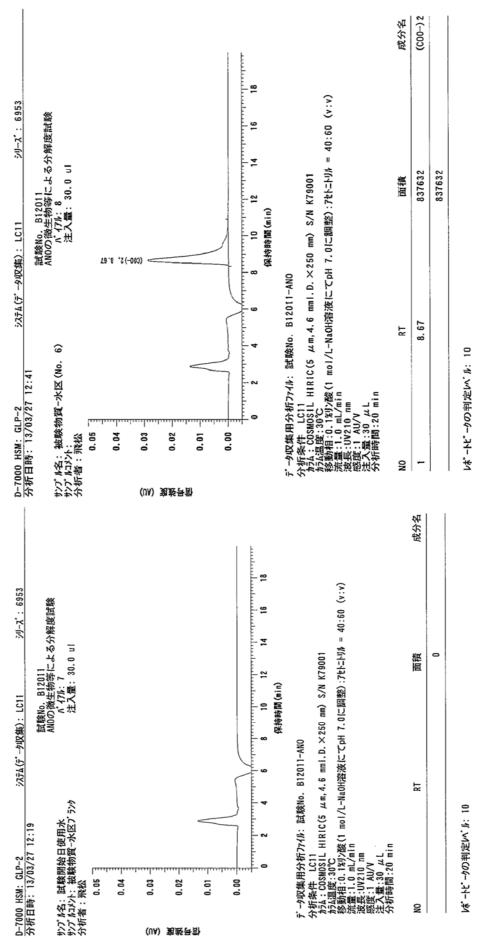

a= 16410 b= -2703 $R^2= 0.9999$ 


| (定量限界) | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup><br>濃度(mg/L) | AREA |
|--------|---------------------------------------------------------|------|
| 標準液-1  | 0.5                                                     | 6771 |

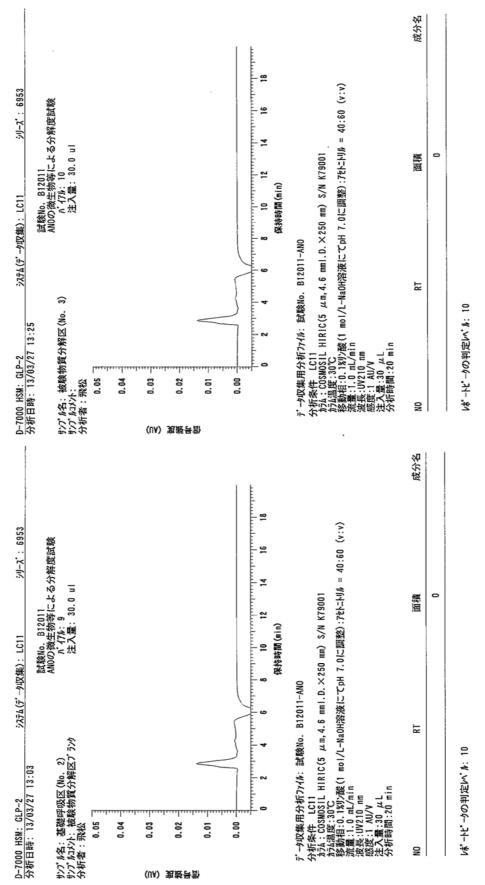
# (分析測定結果)


| (2) N (X)/C/H2/C/ |        |                                                         |  |  |
|-------------------|--------|---------------------------------------------------------|--|--|
|                   | AREA   | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup><br>濃度(mg/L) |  |  |
| 被験物質分解区No.3       | 不検出    | <0.5*1                                                  |  |  |
| 被験物質分解区No.4       | 不検出    | <0.5*1                                                  |  |  |
| 被験物質分解区No.5       | 不検出    | <0.5*1                                                  |  |  |
| 被験物質-水区No.6       | 837632 | 51.2                                                    |  |  |

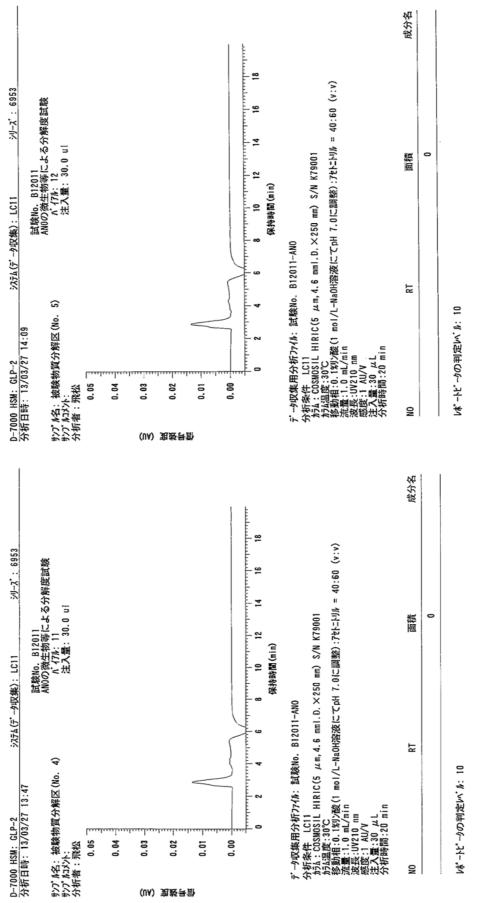
<sup>\*1</sup> 不検出のため定量限界未満とした。



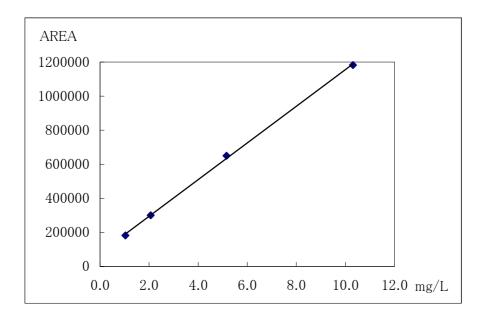




付図 2-4 LC分析 C<sub>2</sub>O<sub>4</sub><sup>2-</sup>標準液クロマトク゛ラム




付図 2-5 LC分析 C<sub>2</sub>O<sub>4</sub><sup>2-</sup>残留量測定クロマトグラム




付図 2-6 LC分析 C<sub>2</sub>O<sub>4</sub><sup>2-</sup>残留量測定クロマトグラム



付図 2-7 LC分析 C<sub>2</sub>O<sub>4</sub><sup>2-</sup>残留量測定クロマトグラム

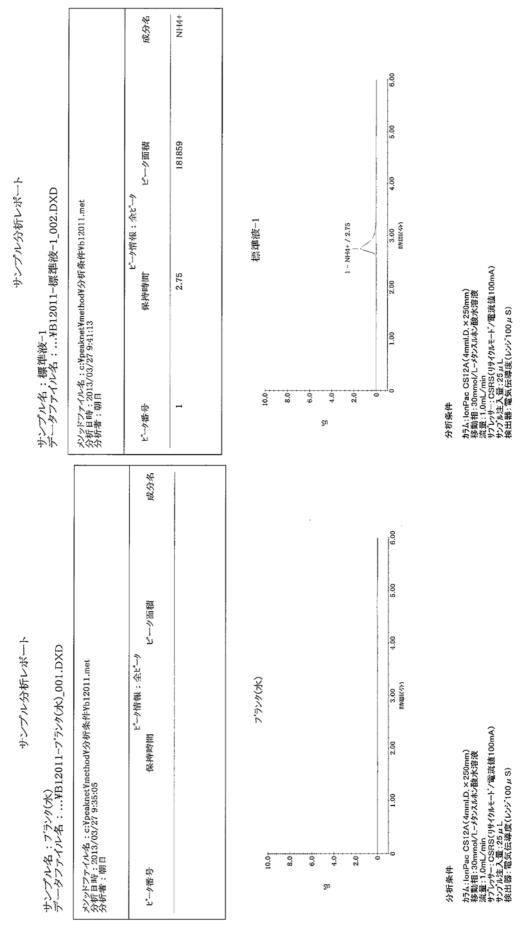


付図 2-8 NH4<sup>+</sup>直接定量 IC分析検量線及び分析測定結果



# (検量線)

|         | NH <sub>4</sub> <sup>+</sup> 濃度<br>(mg/L) | AREA    |
|---------|-------------------------------------------|---------|
| 標準液-1*1 | 1.03                                      | 181859  |
| 標準液-2   | 2.06                                      | 300150  |
| 標準液-3   | 5.15                                      | 650003  |
| 標準液-4   | 10.30                                     | 1181925 |


a= 107800 b= 79010 $R^2= 0.9994$ 

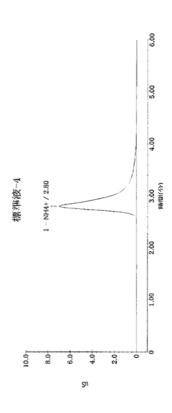
# (分析測定結果)

|                       | AREA   | NH <sub>4</sub> <sup>+</sup> 濃度<br>(mg/L) <sup>*2</sup> |
|-----------------------|--------|---------------------------------------------------------|
| 基礎呼吸区No.2             | 285496 | 1.92                                                    |
| 被験物質分解区No.3           | 567218 | 4.53                                                    |
| 被験物質分解区No.3-基礎呼吸区No.2 | _      | 2.61                                                    |
| 被験物質分解区No.4           | 561293 | 4.47                                                    |
| 被験物質分解区No.4-基礎呼吸区No.2 | _      | 2.55                                                    |
| 被験物質分解区No.5           | 563021 | 4.49                                                    |
| 被験物質分解区No.5-基礎呼吸区No.2 | _      | 2.57                                                    |
| 被験物質-水区No.6           | 361822 | 2.62                                                    |

<sup>\*2</sup> 被験物質分解区は、基礎培養基由来のNH<sub>4</sub><sup>+</sup>が含まれるため、 ブランクとして基礎呼吸区を差し引いた。

<sup>\*1</sup> 定量限界を兼ねる。




成分名 NH4+ 6.00 5.00 パーク面徴 サンプラ分析フポート 4.00 サンプル名:標準液-3 データファイル名:...¥B12011-標準液-3\_004.DXD ピーク情報:全ピーク メメッドファイル名:c:YpeaknetYmethodV分析条件¥b12011.met 分析日時:2013/03/27 9:53:30 分析者:即日 標準液-3 3.00 1 - NH4+ / 2.78 カラム: lonPac OS12A(4mmID.×250mm) 特数相: 20mmol/L-タタンスルホン酸水溶液 浦葉: 1.0mL/min ヤブレッサ- I.CSRS(リザイクルモード/電流値100mA) サンプルま入車: 25.nL サンプルま入車: 25.nL 核出器: 電気伝導度(レジ\*100 μ.S) 2.78 保持時間 2.00 1.00 8.0 6.0 4.0 2.0 分析条件 r°-/番号 Su 成分名 NH4+ 6.00 5.00 300150 アーク面積 サンプル分析フポート 4.00 サンプル名:標準液-2 データファイル名:...¥B12011-標準液-2\_003.DXD ピ-ッ情報:全ピ-ッ メンシドファイル名:c:YpeaknetYmethodY分析条件Yb12011.met 分析日時:2013/03/27 9:47:22 分析者:朝日 標準液-2 3.00 1 - NH4+ / 2.77 カラム: JonPao CS12A(4mmI.D.×250mm) 移動相:30mmol/L-メタンスルネン酸水溶液 液量:10mL/min サブルサー:CSRS(リオクルモード/電流値100mA) サンルは入量:25 μL 核出器:電気伝導度(レジ・100 μ.S) 保持時間 2.00 0.1 8.0 6.0 4.0 2.0 分析条件 ピーク番号 Su

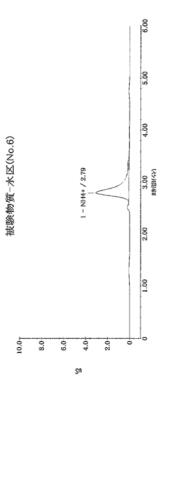
付図 2-11 IC分析 NH4<sup>+</sup> 標準液クロマトグラム

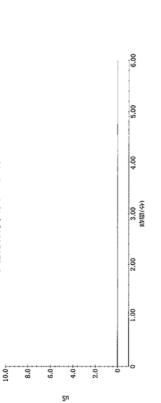
サンプル名:標準液-4 データファイル名:…¥B12011-標準液-4\_005.DXD メンッドファイル名:c:YpeaknetYmethodY分析条件Yb12011.met 分析音時:2013/03/27 9:59:39 分析者:明日 ビーケ番号 保持時間 ピーケーの面積

成分名

NH4+




カラム:tonPac OS12A(4mm!D.×250mm) 移動相:30mmol/L-メタンスルネン酸水溶液 消難:10mL/min サプレザー:CSFS(リオクルモード/電流値100mA) サンプル注入量:25 μL 複出器:電気伝導度(レジ\*100 μS)


分析条件

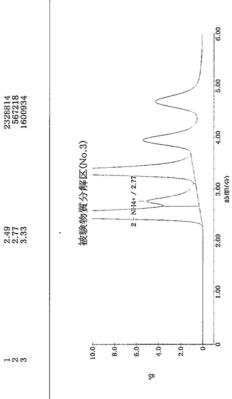
32/49

サンプラ分析フポート サンプラ公枠フポート

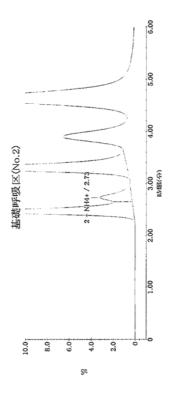
成分名 NH4+ サンプル名:被験物質-水区(No.6) データファイル名:…¥B12011-被験物質-水区(NO.6)\_A002.DXD 361822 ピーク面徴 ピーク情報:全ピーク メソッドファイル名:c:¥peaknet¥method¥分析条件¥b12011.met 分析 F 時:2013/03/27 11:24:08 分析者:明日 2.79 保持時間 L\*一/番号 成分名 サンプル名:水(被験物質-水区プランク) データファイル名:…¥B12011-被験物質-水区プランク\_001.DXD ピーク面積 ピーク情報:全ピーク メンッドファイル名:c:¥peaknet¥method¥分析条件¥b12011.met 分析日時:2013/03/27 10:34:48 分析者:朝日 保持時間 L°-/番号








分析条件


水(被験物質-水区プランク)

分析条件

|            |                                                               |                                                                                                                                                   | 1.1 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | u 4       | 10 10/1/                     |
|------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|
|            |                                                               |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 成分名       | NH4+                         |
| サンプル分析レポート | 平区(NO.3)_003.DXD                                              | メンッドファイル名:c:¥peaknet¥method¥分析条件¥b12011.met<br>分析日時:2013/03/27 11:30:17<br>分析者:朝日                                                                 | 4,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ・エニ・アーク団権 | 2328814<br>567218<br>1600934 |
|            | サンプル名:被験物質分解区(No.3)<br>データファイル名:¥B12011-被験物質分解区(NO.3)_003.DXD |                                                                                                                                                   | 1, 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 : 1/2 | 保持時間      | 2.49<br>2.77<br>3.33         |
|            | サンプル名:被聯データファイル名                                              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ピーク番号     | 128                          |
|            |                                                               |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 成分名       | NH4+                         |
| ナンプラ分析フポート | (NO.2)_003.DXD                                                | サンプル名:基礎呼吸区(No.2)<br>データファイル名:…¥B12011-基礎呼吸区(NO.2)_003.DXD<br>メンッドファイル名:c.YpeaknetYmethodY分析条件Yb12011.met<br>分析 目 時:2013/03/27 10:47:04<br>分析者:第1 | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ドランパーク目扱  | 1254076<br>285496<br>1648301 |
|            | 嵖呼吸区(No.2)<br>:¥B12011−基礎呼吸区                                  |                                                                                                                                                   | T. "YA . B. B. B. Y Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 保持時間      | 2.46<br>2.73<br>3.29         |
|            | : 基役<br>バン名                                                   | 7名:c:\<br>13/03/2                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |

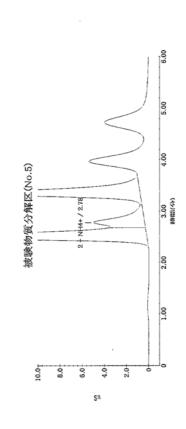




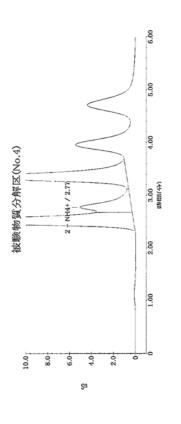


#### 1. VORTA (1947)#モード/電消値100mA) サンプルギー:CSFS(リサイクルモード/電消値100mA) サンプルギス量:55 μ L 核田器:電気伝導度(レジ・100 μ S) カラム:lonPac CS12A(4mml.D.×250mm) 移動相:30mmol/L-メタンスルホン酸水溶液 流量:1.0mL/min

分析条件


サンプラ分析フポート

サンプラ分析フポート


| 驿区(NO.5)_006.DXD                                               | 1.met                                                                             | 全ピーク<br>ピーク面積         | 2337559<br>563021<br>1607421 |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|------------------------------|
| サンプル名:被験物質分解区(No.5)<br>データファイル名:…¥B12011-被験物質分解区(NO.5)_006.DXD | メンドファイル名:c:#peaknet#method#分析条件#b12011.met<br>分析日時:2013/03/27 11:05:28<br>分析者:明日  | ピーク情報:全ピーク保報:全ピーク保持時間 | 2.51<br>2.78<br>3.35         |
| サンプル名:被験物<br>データファイル名:                                         | メンッドファイル名:c:¥peak<br>分析 I 時:2013/03/27 11<br>分析者:朝 日                              | ピーク番号                 | -00                          |
|                                                                |                                                                                   |                       |                              |
|                                                                |                                                                                   | 成分名                   | NH4+                         |
| 解区(NO.4)_005.DXD                                               | 11.met                                                                            | 金ピーケビーケーク回復           | 2324368<br>561293<br>1611371 |
| サンプル名:被聯物質分解区(No.4)<br>データファイル名:¥B12011-被聯物質分解[2               | メンドファイル名:C:WpeaknetYmethodY分析条件+Vb12011.met<br>分析日時:2013/03/27 10:59:21<br>分析者:明日 | ピーク情報:全ピーク<br>保持時間    | 2.50<br>2.77<br>3.34         |
| サンプバ名:被聯<br>データファイア名                                           | メンッドファイル名:c:当<br>分析日時:2013/03/2<br>分析者:朝日                                         | と。一ク番号                | 3.62                         |

政分名

NH4+







### 付図 2-15 ICP分析 Nb5+ 標準液測定結果

#### 〈〈分析結果〉〉

分析名称 : Nb定量\_広栄テクノ

担当者 :山本

試料名 : 超純水

分析日時:2013/03/28 13:38

〈強度〉

元素名 Nb 1回目 .159283 2回目 .159760 3回目 .159760

平均 .159601

R .000477 S .000275 CV .172467

#### 〈〈分析結果〉〉

分析名称: Nb定量 広栄デクノ

担当者 :山本

試料名 : Nb 5.0 μ g/mL

分析日時 : 2013/03/28 13:41

〈強度〉

元素名 Nb 1回目 12.6592 2回目 12.6043 3回目 12.6751 平均 12.6462

R .070777 S .037133 CV .293630

〈〈分析結果〉〉

分析名称 : Nb定量\_広栄テクノ

担当者 : 山本

試料名 : Nb 25.0 μ g/mL

分析日時 : 2013/03/28 13:43

〈強度〉

元素名 Nb 1回目 63.4257 2回目 63.6136 3回目 63.3282 平均 63.4558 R .285389 S .145061 CV .228601

#### 〈〈検量線計算結果〉〉

Nb 309.418 nm 分析名称: Nb定量 広栄デクノ

標準偏差: .037165 相関係数: .999996 濃度単位: μg/mL

試料名 超純水 Nb 5.0 µ g/ml. Nb 25.0 µ g/ml. 強度 計算值 差 濃度 No. .159601 12.6462 .000000 .032519 .032519 4,95949 -.040511 5.00000 25,0080 .007992 25.0000 63.4558

|                   | 担当者 :山本                  | 35段 分析日時:2013/03/28 13:53 |      |      |                                                                                                    |             |         |                               |                                        |            | 1) Q + 2 C                                                         | 5.8/ mg/x 20//00 x (100/) x 200//02 x 1/2m /8.3 | 5,8/mg x 100 = [0f.060        |
|-------------------|--------------------------|---------------------------|------|------|----------------------------------------------------------------------------------------------------|-------------|---------|-------------------------------|----------------------------------------|------------|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------|
| <u>٠</u>          | 分析名称:Nb定量。広栄疗/           | : 被驗物質分解医No.3多股           |      |      | Nb<br>14.7611<br>14.8356                                                                           | 14.7772     | 14.7913 | .074440<br>.039170<br>.264817 |                                        | g          | μ g/mL<br>5.79401<br>5.82338<br>5.80035                            | 5.80591                                         | .029373<br>.015456<br>.266207 |
| <<分析結果>>          | 分析名称                     | 武料名                       |      | 〈強度〉 | 儿<br>10日<br>20日<br>10日<br>10日                                                                      | 回<br>回<br>8 | 中极      | Rνδ                           | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | (京)<br>京業名 | 20回回330回回回                                                         | 平均                                              | Sos                           |
| 拉当者 :山本           | 5波 分析日時:2013/03/28 13:47 |                           |      |      |                                                                                                    |             |         |                               |                                        |            |                                                                    | 0,03 mg 12 × 300/ 1000 = 0,01 mg                | 0,0 = 00/ × (00 = 00/0)       |
| 分析名称 : Nb定册,広学771 | :被赖物質分解区No.3S液           |                           |      | NP   | .157441<br>.158547<br>.158243                                                                      | .158077     | 001105  | .361243                       |                                        | Nb<br>Ami  | , 031667<br>, 032103<br>, 031983                                   | .031918                                         | .000436<br>.000225<br>.705943 |
| 分析名称              | 铁料名                      |                           | 〈強成〉 | 元素名  | 2回<br>3回<br>3回<br>1回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回<br>3回 | 平均          | Ω       | Sv≥                           | 《強度》                                   | 光紫名        | 200<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 中场                                              | Som                           |
|                   |                          |                           |      |      |                                                                                                    |             |         |                               |                                        |            |                                                                    |                                                 |                               |

|          | 担当者 : 山本<br>15残 分析日時 : 2013/03/28 13:55  |                                     |                                          | \$1)948(LX20/1000 X (50/2) X2 = 5,79mg         | 5,09mg × (00= 1030).          |
|----------|------------------------------------------|-------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------|
| <b>^</b> | 分析名称 : Nb定址,広栄テクノ<br>試料名 : 被繁物質分解区No.45残 | Nb<br>14.7167<br>14.7561<br>14.8137 | 14.7622<br>.097022<br>.048795<br>.330544 | Nb<br># g/mL<br>5.77647<br>5.79201<br>5.81475  | .038283<br>.019254<br>.332280 |
| <<分析結果>> | 分析名称                                     | 《強度》<br>10章名<br>20回日<br>30日日        | R S S CV                                 | (豫度)<br>元紫名<br>2回回<br>3回回<br>平均                | CQ or R                       |
|          | : 山本<br>: 2013/03/28 13:49               |                                     |                                          | Pm/0'0 = 000                                   | * O o o                       |
|          | 担当者<br>04ろ液 分析日時                         |                                     |                                          | = 000//c0 { x 7/5w &0 10                       | 8,001 × 100 ×                 |
| <u> </u> | 分析名称 :Nb定量_広栄デリー<br>試料名 :被繁物質分解区No4S液    | Nb<br>.158286<br>.159197<br>.157961 | .158481<br>.001235<br>.000640<br>.404029 | Nb<br># g/ml.<br>.032000<br>.032359<br>.031872 | .000487<br>.000253<br>.787642 |
| <<分析結果>> | 分析名称铁铁路名                                 | 数 形<br>数 聚回四8<br>多 第回回回             | 平均<br>S<br>C<br>V                        | (表)                                            | Z v S                         |

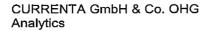
### 〈〈分析結果〉〉

担当者 : 山本 分析名称: Nb定量、広栄デクノ

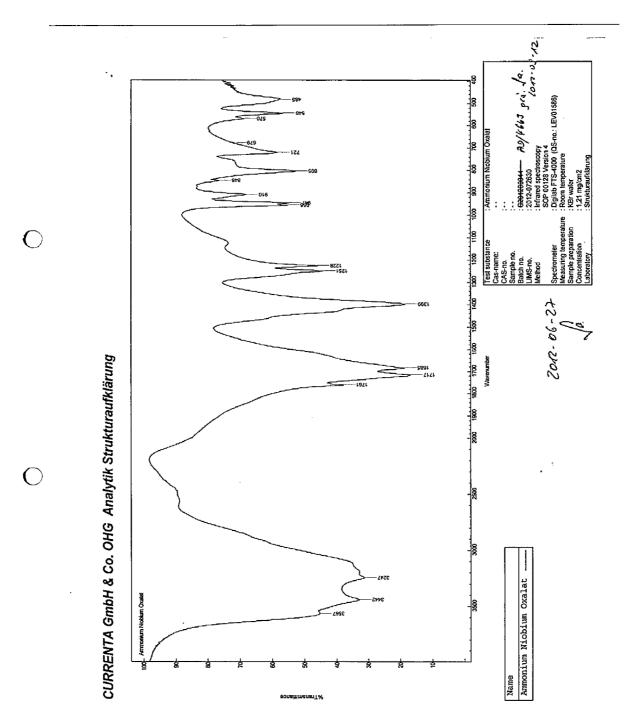
分析日時:2013/03/28 10:26 武料名 : 被験物質-水区No.6

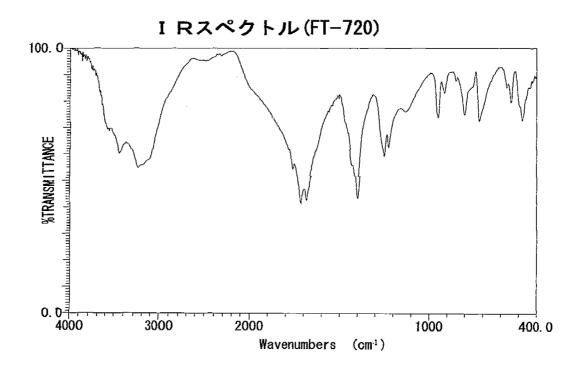
## 〈強度〉

| 元 <b>荣</b> 名 | Nb      |
|--------------|---------|
| 1回目          | 48.4600 |
| 2回目          | 48.3901 |
| 3回目          | 48.3375 |
| 平均           | 48.3958 |
| R            | .122528 |
| S            | .061469 |
| CV           | .127013 |


### 〈渡庭〉

| 元案名 | Nb<br>μg/mL |
|-----|-------------|
| 1回日 | 18.8640     |
| 2回日 | 18.8366     |
| 3回日 | 18.8161     |
| 平均  | 18.8389     |
| R   | .047913     |
| S   | .024037     |
| CV  | .127590     |


$$18.84 \text{ mg/L} \times \frac{300}{1000} = 5.65 \text{ mg}$$


$$\frac{5.65 \text{ mg}}{5.60 \text{ mg}} \times 100 = 101\%$$

DATE 03(MAR)-27-2013 11:24



LIMS No.: 2012-072630 5 Page 5 of 11

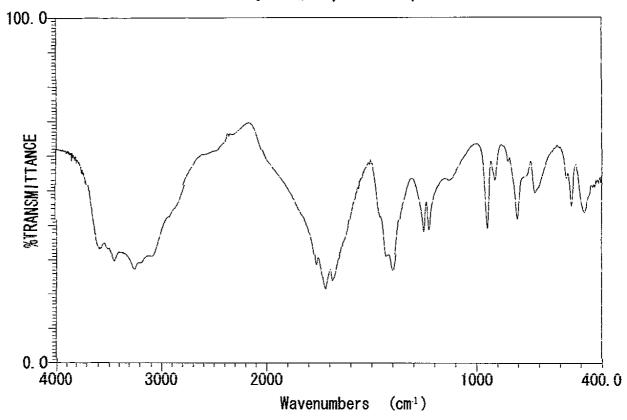




ファイル名 : B12011-1

タイトル

ANO Lot No. AD/4638 2013年02月06日 08時54分03秒


4 cm<sup>-1</sup> 10 回 スキャン回数

2 試験No. B12011 物質確認 KBr-disc法

試験担当者 朝 B 2013 年 1月 6日

試験責任者 2013年2月6日 付図 6 IRスペプトル ANO 安定性確認(暴露試験開始日(2013.2.27)取得データ)

## I Rスペクトル(FT-720)



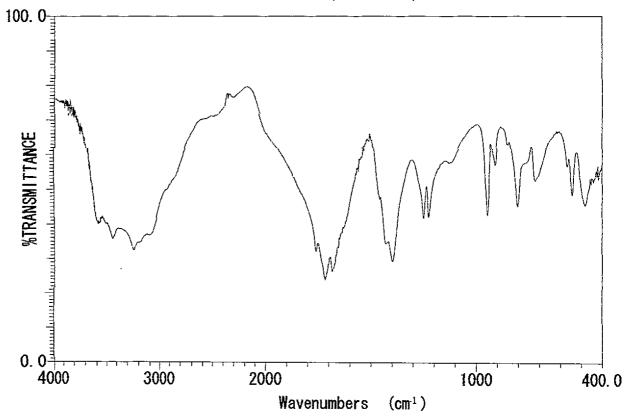
ファイル名 : B12011-2

タイトル : ANO Lot No. AD/4638

測定日時 : 2013年02月27日 13時46分38秒

測定分解能 : 4 cm<sup>-1</sup> スキャン回数 : 10 回 測字ゲイン : 1

コメント : 試験No. B12011


安定性確認 KBr-disk法

試験担当者:飛杯 2013年2月27日

試験責任者: ム本 2013 年 2月27日

付図 7 IRスペックトル ANO 安定性確認 (暴露試験終了日 (2013.3.27) 取得データ)

## I Rスペクトル(FT-720)



ファイル名 : B12011-3

タイトル ANO Lot No. AD/4638

測定日時 2013年03月27日 10時52分08秒

測定分解能 : 4 cm<sup>-1</sup> スキャン回数 10 回 測定ゲイン コメント

試験No. B12011

安定性確認 KBr-disk法

試験担当者 2013年3月27日

試験責任者 25[3 年 3 月 27]日

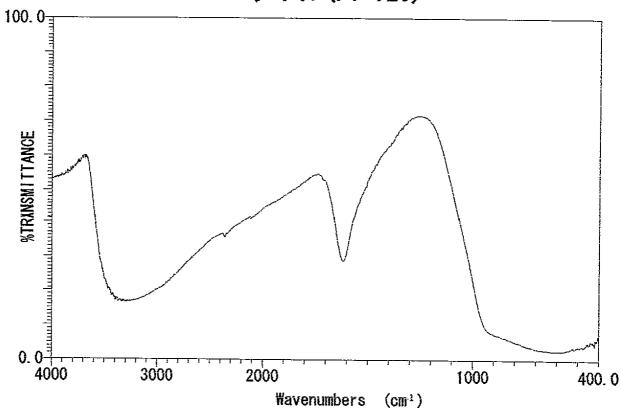
### 付図 8 被験物質の物質確認及び保管条件下に於ける安定性確認表

**第2版** 付[TES-1]-10

## 物質確認及び保管条件下に於ける安定性確認表

試験No.

B12011


被験物質名

Ammonium Niobium Oxalate (ANO)

|        | 年月日    | 試験担当者 | 評価                        | 試験責任者            | 備考      |
|--------|--------|-------|---------------------------|------------------|---------|
| 物質確認   | 130206 | 朝日    | 被験物質に<br>相違ないことを<br>確認した。 | 130206<br>130206 |         |
| 安定性の確認 | 130227 | 形和    | 安定であることを確認して、             | 136227<br>L‡     | 暴露試験開始日 |
| 安定性の確認 | 1303-7 | 税松    | 安定であることを確認した。             | /30327<br>14     | 暴露試験終了日 |
|        |        |       |                           |                  |         |
|        |        |       |                           |                  |         |
|        |        |       |                           |                  |         |
|        |        |       |                           |                  |         |
|        |        |       |                           |                  |         |

付図 9 IRスペプトル 水酸化ニオブ(V)標準品(暴露試験終了日(2013.3.27)取得データ)

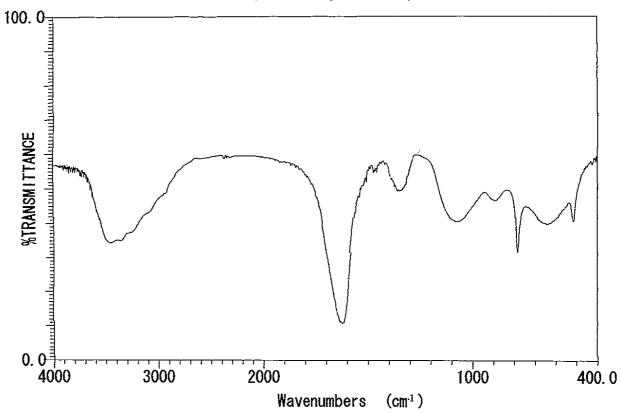
# I Rスペクトル(FT-720)



ファイル名 B1211nb1

水酸化ニオブ(V) タイトル LotNo. 63515 2013年03月27日 13時51分53秒 4 cm<sup>-1</sup> 測定日時

測定分解能 10 回


試験No. B12011 KBr-disc法

2013 年 3 月 27 日 試験担当者 山本

<sub>よのは</sub>年 3月27日 試験責任者 ふむ

付図 10 IRスペプトル ニオブイオンの分解物である水酸化ニオブ(V)の定性分析

## I Rスペクトル(FT-720)



ファイル名 B12011-8

被験物質分解区No. 4

2013年03月27日 13時56分32秒 4 cm<sup>-1</sup>

スキャン回数 10 回 測定ゲイン

コメント 試験No. B12011

KBr-disc法

試験担当者 4 고이 年 3 月 27日

試験責任者 2013 年 3 月 21 日 4