

Receipt number	682-15-N-6100
Study number	46100

FINAL REPORT

Bioconcentration study of ANO in common carp

April, 2016

Chemicals Evaluation and Research Institute, Japan, Kurume

GLP STATEMENT

Chemicals Evaluation and Research Institute, Japan, Kurume

Sponsor

CBMM - Companhia Brasileira de Metalurgia e Mineracao

Title

Bioconcentration study of ANO in common carp

Study number

46100

The study described in this report was conducted in compliance with the following GLP principles:

- a) "Standard Concerning Testing Facility Relating to New Chemical Substances" (March 31, 2011; No. 0331-8, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 29, 2011, No. 6, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry; No. 110331010, Environmental Policy Bureau, Ministry of the Environment, Japan.)
- b) OECD Principles of Good Laboratory Practice, November 26, 1997, ENV/MC/CHEM (98)17

This final report reflects the raw data accurately and it has been confirmed that the test data are valid.

Date

Study Director

April 12,2016

Naoki Hashizume

Naoki Hashizume

QUALITY ASSURANCE STATEMENT

Chemicals Evaluation and Research Institute, Japan, Kurume

Sponsor:

CBMM - Companhia Brasileira de Metalurgia e Mineracao

Title:

Bioconcentration study of ANO in common carp

Study number:

46100

I assure that the final report accurately describes the test methods and procedures, and that the reported results accurately reflect the raw data of the study.

The inspections of this study were carried out and the results were reported to the Study Director and the Test Facility Management by Quality Assurance Unit as follows.

Item of inspection	Date of	f inspect	ion	Date	of repor	t
Draft study plan	December	18,	2015	December	18,	2015
Re-inspection of draft study plan	December	21,	2015	December	21,	2015
Study plan	December	22,	2015	December	22,	2015
Acute toxicity test	January	5,	2016	January	5,	2016
Recovery test for analysis of test water	January	6,	2016	January	6,	2016
Recovery test for analysis of test fish	January	6,	2016	January	6,	2016
Preparation of stock solutions	January	12,	2016	January	12,	2016
Measurement of lipid content in test	January	13,	2016	Lanuagy	1.4	2016
fish	January	14,	2016	January	14,	2016
Study plan amendment No.1	January	15,	2016	January	15,	2016
Start of exposure	January	15,	2016	January	15,	2016
Analysis of test water	January	20,	2016	January	20,	2016
Analysis of test fish	January	20,	2016	January	20,	2016
Study plan amendment No.2	March	8,	2016	March	8,	2016
Raw data and draft final report	March	8,	2016	March	8,	2016
Re-inspection of raw data and draft final report	March	14,	2016	March	14,	2016
Final report	April	12,	2016	April	12,	2016

Date

Personnel of Quality Assurance Unit:

April 12, 2016

Keiji Shiraishi

CONTENTS

		page
	Title	
2.	Sponsor	6
3.	Test facility	6
4.	Objective	6
5.	Test method	6
6.	GLP principles	6
7.	Dates	6
	Storage of test sample and documents	
	Personnel	
	Approval of final report	
	Materials.	
	2.1 Test item	
	2.2 Test fish	
	Performance of acute toxicity test	
	3.1 Test method	
	3.2 Certification	
	3.3 Dilution water for test	
-	3.4 Preparation of stock solution	
	3.5 Test conditions	
	3.6 Performance of test	
	3.7 Estimation of 96-hour LC ₅₀ value	
	3.8 Test result	
14.	Performance of bioconcentration test	12
	4.1 Dilution water for test	
14	4.2 Conditions of test and circumstances	12
14	4.3 Preparation of stock solutions	13
14	4.4 Test concentrations	13
	4.5 Observation, measurement and cleaning	
	4.6 Analysis of test water and test fish	
	4.7 Calculation of results	
	4.8 Treatment of numerical values	
	Factors that affected reliability of test	
	Results and discussion	
	6.1 Lipid content in test fish	
	6.2 Concentration of the test item in test water	
	6.3 Bioconcentration factors	
	6.4 BCFs at a steady-state (BCFss)	
	6.5 Growth rate constant (kg)	
	6.6 Results of test fish observation	
	6.7 Discussion	
17.	Conclusion	21

T	ables	
	Table-1	Measured concentrations of test item in test water (see text)
	Table-2	BCFs (see text)
	Table-3	Calculation table for recovery and blank test (analysis of test water)
	Table-4	Calculation table for analysis of test water (Level 1)
	Table-5	Calculation table for analysis of test water (Level 2)
	Table-6	Calculation table for recovery and blank test (analysis of test fish)
	Table-7	Calculation table for analysis of test fish (Level 1)
	Table-8	Calculation table for analysis of test fish (Level 2)
	Table-9	Calculation table for analysis of test fish (Control)
	Reference 1	Analytical results of dilution water
F	igures	
	Fig. 1	Correlation between uptake phase and bioconcentration factor (Level 1)
	Fig. 2	Correlation between uptake phase and bioconcentration factor (Level 2)
	Fig. 3	Concentration-mortality curve
	Fig. 4	Calibration curve of test item (analysis of test water)
	Fig. 5	Calibration curve of test item (analysis of test fish)
	Fig. 6-1	IR spectrum of test item measured before experimental start
	Fig. 6-2	IR spectrum of test item measured after experimental completion
	Reference 2	IR spectrum supplied by sponsor

1. Title

Bioconcentration study of ANO in common carp

2. Sponsor

Name

CBMM - Companhia Brasileira de Metalurgia e Mineracao

Address

Córrego de Mata s/n, 38183-903 Araxá - MG, Brasil

3. Test facility

Name

Chemicals Evaluation and Research Institute, Japan, Kurume (CERI Kurume)

Address

3-2-7 Miyanojin, Kurume-shi, Fukuoka 839-0801, Japan

4. Objective

This study was performed to evaluate the bioconcentration potential of ANO in common carp.

5. Test method

- a) "Method for Testing the Degree of Accumulation of Chemical Substances in Fish Body" stipulated in the "Testing Methods for New Chemical Substances" (March 31, 2011, No.0331-7, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 29, 2011, No.5, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry; No. 110331009, Environmental Policy Bureau, Ministry of the Environment, Japan; partially revised, April 2, 2012, No. 0402-1, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 28, 2012, No. 2, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry, No. 120402001, Environmental Policy Bureau, Ministry of the Environment, Japan)
- b) "305-I: Aqueous Exposure Bioconcentration Fish Test" stipulated in the OECD Guidelines for Testing of Chemicals, No.305, October 2, 2012, "Bioaccumulation in Fish: Aqueous and Dietary Exposure"

6. GLP principles

- a) "Standard Concerning Testing Facility Relating to New Chemical Substances" (March 31, 2011; No. 0331-8, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 29, 2011, No. 6, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry; No. 110331010, Environmental Policy Bureau, Ministry of the Environment, Japan.
- b) OECD Principles of Good Laboratory Practice, November 26, 1997, ENV/MC/CHEM (98)17

7. Dates

Study initiation date

December 22, 2015

Experimental starting date

January 15, 2016

Experimental completion date

February 12, 2016

Study completion date

April 12, 2016

8. Storage of test sample and documents

The study plan (original), the final report (original), the raw data, documents concerning the study presented by the sponsor, other reports, and the test sample are stored in the archives of this laboratory.

The storage period is 10 years after the study completion date. In case of receipt of the notice specified under Clause 1 or Clause 2 of Article 4; Clause 2, Clause 3, or Clause 8 of Article 5; Clause 3 of Article 10; or Clause 2 of Article 14 of the "Law Concerning Examination and Regulation of Manufacture etc. of Chemical Substances", these items are stored for 10 years from that date. After 10 years from the study completion date, the storage period is discussed with the sponsor. The stability of the test sample is not confirmed during the storage period.

The management of the test sample and raw data, etc. after the storage period (continue, reject, or return) is discussed with the sponsor.

9. Personnel

Study Director

Study personnel (Operation of bioconcentration test)

Study personnel (Operation of acute toxicity test)

Naoki Hashizume (Section 3)

Kaori Nishio

Takeshi Ishibashi

10. Approval of final report

Date

Study Director

April 12, 2016

Naoki Hashizume

11. Summary

Test item

ANO

Objective

This study was performed to evaluate the bioconcentration potential of ANO in common carp.

Test method

- a) "Method for Testing the Degree of Accumulation of Chemical Substances in Fish Body" stipulated in the "Testing Methods for New Chemical Substances" (March 31, 2011, No.0331-7, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 29, 2011, No.5, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry; No. 110331009, Environmental Policy Bureau, Ministry of the Environment, Japan; partially revised, April 2, 2012, No. 0402-1, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare; March 28, 2012, No. 2, Manufacturing Industries Bureau, Ministry of Economy, Trade and Industry, No. 120402001, Environmental Policy Bureau, Ministry of the Environment, Japan)
- b) "305-I: Aqueous Exposure Bioconcentration Fish Test" stipulated in the OECD Guidelines for Testing of Chemicals, No.305, October 2, 2012, "Bioaccumulation in Fish: Aqueous and Dietary Exposure"

Test conditions

a) Acute toxicity test

Test fish

Common carp (Cyprinus carpio)

Duration of exposure

96 hours

Exposure method

Semi static system (Renewal of test water at every 24 hours)

b) Bioconcentration test

Test fish

Common carp (Cyprinus carpio)

Nominal concentrations of test item

High exposure level (Level 1)

Low exposure level (Level 2)

700 μg/L 70 μg/L

Duration of exposure

28 days

Exposure method

Flow-through system

Analytical method

Inductively-coupled plasma atomic emission spectrometry

Results

a) Acute toxicity test

96-hour LC₅₀ value

99.0 mg/L

b) Bioconcentration test

Level 1	Bioconcentration factor
Level 1	<2.3-12
Level 2	<23

The values are substantially lower than the threshold values for bioaccumulating (or very bioaccumulating) substances, according to Japan's Chemical Substances Control Law and Regulation (EC) No 1907/2006 (REACh). Therefore, the substance can be regarded as not bioaccumulative.

12. Materials

12.1 Test item

In the biodegradation study, ANO was completely biodegraded and Niobium hydroxide (V) remained after 28 days of incubation period. In general, bioconcentration study of Niobium hydroxide (V) is required in accordance with Japan's Chemical Substance Control Law. However, conducting the bioconcentration study of Niobium hydroxide (V) is expected to be difficult due to its low water solubility. After consultation with Japan's regulatory authority (Ministry of Economy, Trade and Industry, Japan), it was decided to conduct the bioconcentration study using ANO as test item and quantify the niobium ion to evaluate the bioconcentration potential of Niobium hydroxide (V). All concentration in this study was described as the test item, ANO.

a) Chemical name etc.

Chemical name Mixture of ammonium oxobis(ethanedioato) bisaquo niobate(V)

hydrates and ammonium hydrogen ethanedioate ethandioic acid

dehydrate

Synonym (anhydrous form)

Reaction mass of ammonium diaqua[bis(oxalate)]oxoniobate(1-) and

ammonium hydrogen oxalate oxalic acid (1:1:1)

Abbreviation

ANO

b) Chemical structure etc.

Molecular formula

Constituent 1: $NH_4[NbO(C_2O_4)_2 \cdot 2H_2O] \cdot 3H_2O$

Constituent 2: $(NH_4C_2HO_4)_2 \cdot (C_2O_4H_2 \cdot 2H_2O)_2$

Molecular Weight

Constituent 1:393.06

Constituent 2:466.26

c) Test sample

Purity of test item

97% (constituent 1:70%, constituent 2:27%)

Impurity

Water

2.5%

Inorganic impurities 0.5%

Supplier

CBMM - Companhia Brasileira de Metalurgia e Mineracao

Lot number

AD/5275

The test item was treated as 100% in purity.

d) Physicochemical properties

Water solubility

10 g/L (Visual, confirmed in CERI Kurume)

Appearance

White solid

Stability

Stable

e) Storage conditions

The test sample was stored in a dark storage place at room temperature.

f) Confirmation of the identity for test item and the stability under storage condition

The infrared (IR) spectrum of the test item measured in our laboratory was confirmed to be identical to that of the sponsor (see Fig. 6, Reference 2).

The stability of the test item in the storage condition was confirmed by comparing the IR spectrum of the test item before the experimental start and after the experimental completion (see Fig. 6).

g) Stability under testing conditions

As a result of biodegradation study, ANO was confirmed to be hydrolyzed and generate the niobium ion immediately after contact with water. Stability of generated niobium ion under the testing conditions was confirmed by a preliminary test.

h) Caution when handling

In order to avoid inhalation and contact with the skin and eyes, chemically resistant gloves, mask. safety glasses, and white coats were worn when handling test item.

12.2 Test fish

a) Acute toxicity test

Species

Common carp (Cyprinus carpio)

Reason for selection: The same fish species for the bioconcentration test.

Supplier

CERI Kurume

Lot No.

TFC-151118

Length

3.4-3.7 cm

b) Bioconcentration test

Species

Common carp (Cyprinus carpio)

Reason for selection: The previous data conducted with this species

can be compared and the size of this species is

adequate for handling.

Supplier

CERI Kurume

Conditions for acclimatization

The external disinfection was carried out in an aqueous solution containing OTC for fisheries (Oxytetracycline hydrochloride, Kyoritsu Seiyaku) and sodium chloride (The Salt Industry Center of Japan). Thereafter fish were acclimatized in the following conditions.

Period:

After rearing in the underground water for 16 days, the

fish were acclimatized in the dechlorinated water for 21

days.

Temperature:

25±2°C

Mortality during acclimatization was less than 5%.

Lot No.

TFC-151126

Length

7.0-8.6 cm (at the beginning of exposure 7.0-7.4 cm)

Age

Yearling fish

Feeding

Feed:

Feed for carp

Composition: Proteins content $\geq 30.0\%$

Lipid content

 $\geq 4.0\%$

Manufacturer: Kyorin Food Industries

Feeding amount and interval: Amount corresponding to approximately

3% of total body weight was fed twice a day in halves

(once a day in all at holiday).

The fish were fasted for 24 hours before sampling.

13. Performance of acute toxicity test

13.1 Test method

The test was performed in accordance with Japanese Industrial Standard (JIS K 0102-2013-71.).

13.2 Certification

The 48-hour LC₅₀ value of the reference substance (Pentachlorophenol sodium salt, CAS number 131-52-2, Tokyo Kasei Kogyo Co., Ltd., Lot No. GE01) for the fish of the same lot was 0.286 mg/L.

13.3 · Dilution water for test

a) Origin

Dechlorinated water [City water was treated by charcoal bed system (ORGANO Co., Ltd.)]

b) Water quality assessment

The result for the water quality assessment of the dilution water are shown in Reference 1. It was confirmed that the dilution water meets the criteria as stipulated in the standard operation procedure.

13.4 Preparation of stock solution

Test sample (15.0 g) was dissolved in 1.5 L of ion-exchange water to prepare 10.0 g/L stock solution. This procedure was conducted twice to prepare total 3 L stock solution.

13.5 Test conditions

Test concentrations

140 mg/L, 70.0 mg/L, 35.0 mg/L and Control

Test tank

30 L glass tank

Volume of test water

Number of fish

30 L/Level 10 fish/Level

Temperature of test water

At the initial of exposure

24.5-24.7°C

Before the renewal of test water (At first renewal)

24.5-24.6°C

Concentration of dissolved oxygen in test water

At the initial of exposure

 $8.0-8.1 \, \text{mg/L}$

Before the renewal of test water (At first renewal)

7.2-7.9 mg/L

pH of test water

At the initial of exposure

4.2-7.7

Before the renewal of test water (At first renewal)

4.1 - 7.8

Duration of exposure

96 hours

Exposure method

Semi static system (Renewal of test water at every 24 hours)

Aeration

No aeration

Time of irradiation with light

16 hours light / 8 hours dark (artificial light of white fluorescent lamp)

13.6 Performance of test

Place

Aquatron room B

Date

January 4, 2016 - January 8, 2016

13.7 Estimation of 96-hour LC₅₀ value

The 96-hour LC₅₀ value was estimated by the Doudoroff method.

13.8 Test result

96-hour LC₅₀ value of the test item

99.0 mg/L (see Fig. 3)

No abnormalities were observed in control.

14. Performance of bioconcentration test

14.1 Dilution water for test

The same as described in Section 13.3

14.2 Conditions of test and circumstances

Supply of test water

Flow-through system assembled at this laboratory was used.

Test tank

70 L glass tank

Flow rate of test water

0.04 mL/min for stock solution and 800 mL/min for dilution water,

1152 L/day of test water, were supplied. Test water was supplied to

the test tanks from January 12, 2016.

Stock solution bottle

500 mL glass brown bottle

(Frequency of renewal Once a week)

Temperature of test water

Before uptake phase

Level 1 23.9-24.0°C

Level 2 23.9-24.0°C

Control 23.8-23.9°C

Uptake phase

Level 1 23.9-24.2°C

Level 2 23.9-24.2°C

Control 23.8-24.1℃

Concentrations of dissolved oxygen in test water

Before uptake phase

Level 1 7.9 mg/L

Level 2 7.9 mg/L

Control 7.5 mg/L

Uptake phase

Level 1 7.7-8.0 mg/L

Level 2 7.6-7.9 mg/L

Control 7.6-8.0 mg/L

pH of test water

Before uptake phase

Level 1 7.6

Level 2 7.6

Control 7.6

Uptake phase

Level 1 7.4, 7.5

Level 2 7.4, 7.5

Control 7.6, 7.6

Total organic carbon

Before uptake phase (before 48 and 24 hours)

Level 1 <1.00 mgC/L, <1.00 mgC/L

Level 2 <1.00 mgC/L, <1.00 mgC/L

Control $<1.00 \,\mathrm{mgC/L}$, $<1.00 \,\mathrm{mgC/L}$

Uptake phase

Level 1 < 1.00 mgC/L

Level 2 <1.00 mgC/L

Control <1.00 mgC/L

Total hardness

Level 1

41.4 mgCaCO₃/L

Control

40.2 mgCaCO₃/L

Aeration

The test tanks were supplied with air during the exposure.

Time of irradiation with light

14 hours light /10 hours dark (artificial light of white fluorescent lamp)

Number of fish (at the beginning of exposure)

Level 1 and 2

28

Control

12

Duration of exposure

28 days

Reason: A steady-state was reached after 28 days in accordance with

test method 5 a).

Place

Aquatron room A

14.3 Preparation of stock solutions

a) Level 1

Test sample (7.00 g) was dissolved in ion-exchange water to prepare 14.0 g/L stock solution (500 mL).

b) Level 2

Test sample (0.700 g) was dissolved in ion-exchange water to prepare 1.40 g/L stock solution (500 mL).

14.4 Test concentrations

Test nominal concentrations of the test item were set as follows. The control was set as a blank test.

Level 1

700 µg/L

Level 2

70 μg/L

14.5 Observation, measurement and cleaning

Observation and measurement were conducted as following table. Excreta of carp, dirt on test tank, etc. were removed approximately once a day.

Items	Frequency
Observation of test fish	Twice a day (once a day at holiday) in experimental period.
Water temperature	Daily before addition of test fish and during experimental period.
Flow rate of test water	Daily before addition of test fish and during experimental period.
Dissolved oxygen	Once at the beginning and 1-2 times a week in experimental period.
рН	Once at the beginning and twice in experimental period.
Tetal americanshan	Before addition of the test fish (24h and 48h before the uptake phase),
Total organic carbon	and once a week during experimental period.
Total hardness	Once in the experimental period for Control and Level 1, respectively.

14.6 Analysis of test water and test fish

Analysis of the test item, as niobium ion, in test water and test fish was performed with inductively-coupled plasma atomic emission spectrometry (ICP-AES) analysis.

14.6.1 Frequency of analysis

a) Test water analysis

Test water of Level 1 and Level 2 were analyzed once before addition of the test fish and thereafter, analyzed at the same time as analysis of test fish during the uptake phase. Test water of Control was analyzed before addition of the test fish and after the experimental completion. One sample was analyzed at each sampling time.

b) Test fish analysis

Test fish of Level 1 and Level 2 were analyzed five times during the uptake phase. Four fish per treatment level were taken out at each sampling time and divided into two groups (two fish per group) because one fish was too small to take out the lipid content measurement sample. Test fish analysis was carried out at intervals of more than 48 hours, and the final analysis was conducted after 28 days.

Test fish of Control was analyzed before the experimental start and after the experimental completion. Four fish were taken out at the sampling time and divided into two groups (two fish per group), and analyzed individually. Test fish before the experimental start was taken from the stock population.

14.6.2 Pretreatment for analysis

a) Test water

An aliquot of the test water was taken from test tank and pretreated for ICP-AES analysis as follows.

Level 1

5 mL (whole pipette)

Level 2

50 mL (whole pipette)

Control

50 mL (whole pipette)

Test water

- ←Water for recovery test 45 mL (graduated cylinder) (only for Level 1)
- ←Sulfuric acid 1 mL (measuring pipette)
- · Concentrate to approximately 1 mL (electric griddle)
- · Ultrasonic irradiation (ultrasonic bath, approximately 1 min.)
- Fill up to 10 mL (ion-exchange water, volumetric flask)
- Filtrate (membrane filter, pore size 0.45 µm)

Sample for ICP-AES analysis

b) Test fish

Test fish were taken from each test tank and pretreated for ICP-AES analysis as follows.

Test fish

- Measure weight and body length
- Chop into pieces (scissors)
- Refine (polytron, approximately 2 min, on ice water)

Refine sample

• Take out 4-5 g (analytical balance)

Sample for storage

- Take out 1 g (analytical balance)
- ←Sulfuric acid 2 mL (measuring pipette)
- ←Nitric acid (1.38) 2 mL (measuring pipette)
- · Wet ashing (Organic synthesizer, approximately 140°C, 2 hours)
- Cooling (in water)
- Fill up to 50 mL (ion-exchange water, volumetric flask)
- Filtrate (membrane filter, pore size 0.45 μm)

Sample for ICP-AES analysis

14.6.3 Quantitative analysis for test item

a) Quantitative method

Concentration of the test item was quantified with absolute calibration curve method using one concentration of standard solution.

In order to confirm the validity of this quantification method, the calibration curve was made using four concentrations of standard solution for test water analysis and test fish analysis, 35.0, 175, 350 and $700 \,\mu\text{g/L}$ (see Figs. 4, 5). As a result, the regression lines of the calibration curves were straight line from the origin, therefore the validity of the quantification method was confirmed.

b) Analytical conditions

Instrument Inductively-coupled plasma atomic emission spectrometer

Optima 5300 DV (PerkinElmer, Inc.)

Element

Niobium

Wavelength

269.706 nm

Plasma gas

Argon 15 L/min

Carrier gas

Argon 0.70 L/min

Auxiliary gas

Nitrogen 0.2 L/min

RF power

1300 W

View

Radial

View height

15.0 mm

Sample flow rate

1.00 mL/min

- c) Preparation of standard solution and calculation of the test item concentration in sample
 - 1) Test water analysis

Matrix-matched standard solution was used for test water analysis since matrix of test water influence the analytical sensitivity of the test item. Test sample (100 mg) was accurately weighed with an electronic analytical balance and dissolved in ion-exchange water to prepare 1000 mg/L solution (100 mL). This was diluted with ion-exchange water to prepare 35.0 mg/L solution. This solution was pretreated as follows to prepare 350 µg/L standard solution.

The concentration of the test item in the sample for ICP-AES was calculated proportionally by comparing the emission intensity of the sample for ICP-AES with that of 350 μ g/L standard solution (see Tables-4, 5).

The lowest quantifiable concentration of the test item was regarded as $35.0 \mu g/L$ which is the lowest concentration of standard solution in the calibration curve (see Fig. 4).

50 mL of water described in Section 14.6.4

- ←Sulfuric acid 1 mL (measuring pipette)
- · Concentrate to approximately 1 mL (electric griddle)
- Ultrasonic irradiation (ultrasonic bath, approximately 1 min.)
- ←Ion-exchange water approximately 7 mL (measuring pipette)
- ←35.0 mg/L solution of test item 100 µL (micro syringe)
- Fill up to 10 mL (ion-exchange water, volumetric flask)
- Filtrate (membrane filter, pore size 0.45 μm)

350 µg/L Standard solution (Analysis for test water)

2) Test fish analysis

Test sample (100 mg) was accurately weighed with an electronic analytical balance and dissolved in ion exchange water to prepare 1000 mg/L solution (100 mL). This was diluted with ion-exchange water/sulfuric acid/nitric acid (1.38) (50/2/2 v/v/v) to prepare 350 μg/L standard solution.

The concentration of the test item in the sample for ICP-AES was calculated proportionally by comparing the emission intensity of the sample for ICP-AES with that of 350 μ g/L standard solution (see Tables-7, 8, 9).

The lowest quantifiable concentration of the test item was regarded as $35.0 \mu g/L$ which is the lowest concentration of standard solution in the calibration curve (see Fig. 5).

14.6.4 Recovery test

a) Method

Recovery test were conducted using test water for recovery test and chopped fish sample (10 g) of test fish for recovery test. Specified amount of the test item were added to water and fish sample, and pretreated in the same manner as described in Section 14.6.2. The blank tests were also performed in the same manner but without adding the test item. The recovery and blank tests were performed in duplicate and average recovery rate were calculated.

b) Results of recovery test

In the blank tests, the emission intensity for both of test water and test fish analyses were below the lowest quantifiable concentration described in Section 14.6.3 c). The duplicate recovery rates and the average of them in the pretreatment are shown below (see Table-3,6). The average recovery rate was used as correction factors for the quantification of the test item concentrations in the analytical samples.

Recovery rate for each treatment

For analysis of test water

Amount of test item spiked (3.50 µg)

= Nominal concentration of Level 2 (70 μg/L) × Amount of sampling water (50 mL)

Addition method (100 µL of 35.0 mg/L stock solution of test item)

104%, 108%

average

106%

108%

For analysis of test fish

Amount of test item spiked (175 µg)

= Nominal concentration of Level 2 (70 µg/L)

× Assumed bioconcentration factor (250 L kg⁻¹) × Fish weight (10 g)

Addition method (250 μ L of 700 mg/L stock solution of test item)

111%, 105% average

14.6.5 Lipid content in test fish

Lipid contents of test fish were determined using control fish samples before and after the experiment to confirm whether the fish lipid after the experimental completion is within ±25% of the fish lipid before the experimental start. Lipid contents were analyzed using the storage sample of the same fish for the test item analysis. Additionally, two fish were taken out and total of three groups (two fish per group) were analyzed individually. Lipid contents were determined with gravimetric analysis after chloroform-methanol extraction.

14.6.6 Calculation of the test item concentration in sample and limit of quantification (LOQ)

a) Calculation of the test item concentration in test water

The equations in Tables-4 and 5 were used to obtain the concentrations, and they were rounded off to 3 figures.

b) LOQ of the test item in test water

 LOQ^{*1} of the test item in test water was calculated on the basis of lowest quantifiable concentration of the test item described in Sections 14.6.3 c).

Level 1 66 µg/L

Level 2 6.6 µg/L

c) Calculation of the test item concentration in test fish

The equations in Tables-7, 8 and 9 were used to obtain the concentrations, and they were rounded off to 3 figures.

d) LOQ of the test item in test fish

Assuming the fine sample of test fish to be 1 g, the LOQ^{*1} of the test item in test fish was calculated to be 1600 ng/g on the basis of lowest quantifiable concentration of the test item described in Section 14.6.3 c).

*1 LOQ of the test item (µg/L or ng/g) = $\frac{A}{\frac{B}{100} \times \frac{C \times E}{D}}$

A: Lowest quantifiable concentration of the test item (μg/L)

B: Recovery rate (%)

C: Sampling volume of test water (mL) or fine sample of fish (g)

D: Final volume of sample solution (mL)

E: Ratio of the portion used for analysis to whole volume

Results were rounded off to 2 figures.

14.7 Calculation of results

14.7.1 Calculation of lipid content

Lipid contents were calculated according to following equation.

Lipid content (%) = $(T - T_0) / S \times 100$

To: Weight of vessel (g)

T: Weight of sample for gravimetric analysis containing vessel (g)

S: Weight of fine sample taken out for analysis of lipid content (g)

14.7.2 Calculation of average concentration of the test item in test water

 $\overline{C_{\mathrm{wt}}} = \{C_{\mathrm{w}}(1) + \dots + C_{\mathrm{w}}(n)\}/n$

 $\overline{C_{\rm wt}}$: Average concentration of the test item in test water ($\mu g/L$)

n : Number of analysis for test water (measurement times)

 $C_{\rm w}(1)$: Concentration of the test item in 1st analysis of test water (μ g/L) $C_{\rm w}(n)$: Concentration of the test item in n-th analysis of test water (μ g/L)

14.7.3 Calculation of bioconcentration factor (BCF)

BCF was calculated as follows.

a) Calculation of bioconcentration factor

 $BCF = C_f / \overline{C_w}$

BCF : Bioconcentration factor

 $\underline{C_f}$: Concentration of the test item in test fish (subtract FB) (ng/g)

 $\overline{C_{\rm w}}$: Average concentration of the test item in test water ($\mu g/L$)

FB : Arithmetical average concentration of the test item or the blank in the control test

fish anayzed before and after experiment (ng/g)

b) Average bioconcentration factor in *m*-th analysis

BCFm = (BCFa + BCFb)/n

BCFm: Average bioconcentration factor in m-th analysis (number of group 2 (a,b))

BCFa,b: Each bioconcentration factor in *m*-th analysis of test fish

n : Number of group in *m*-th analysis of test fish

BCFm was not calculated when one or more concentrations of the test item in test fish at *m*-th analysis were not higher than the LOQ.

14.7.4 Definition of steady-state

It is evaluated that a steady-state has been reached when a variation of the concentration of the test item in test fish $(C_{\rm f})$ for four successive analysis made on samples taken at intervals of at least 48 hours are within 20% of each other. When BCFs are less than 100, it is evaluated that a steady-state has been reached on the 28th day even if the variation of the $C_{\rm f}$ are over 20% according to the test method of 5.a).

If one or more non-quantifiable data of C_f exist in the four successive analysis or the variation of C_f is over 20%, BCFss cannot be calculated and the range of all BCF is reported.

Criterion of the steady-state was reached: V(m-3), V(m-2), V(m-1), V(m) ≤20 (%)

V(m-3) =
$$\frac{|C_f(m-3) - \overline{C_f}|}{\overline{C_f}} \times 100$$

V(m-2) =
$$\frac{|C_f(m-2) - \overline{C_f}|}{|C_f|} \times 100$$

V(m-1) =
$$\frac{|C_f(m-1) - \overline{C_f}|}{\overline{C_f}} \times 100$$

$$V(m) = \frac{\left| C_f(m) - \overline{C_f} \right|}{\overline{C_f}} \times 100$$

V(m-3)V(m-2), V(m-1), V(m) : Variation rate of concentration of the test item in test fish (%)

 $C_f(m-3)$, $C_f(m-2)$, $C_f(m-1)$, $C_f(m)$: Average of concentration of the test item in test fish for m-

3, m-2, m-1, m-th analysis of group n

 $\overline{C_f}$: $\{C_f(m-3) + C_f(m-2) + C_f(m-1) + C_f(m)\}/4$

14.7.5 Calculable BCF

On the basis of LOQ for the test item in Section 14.6.6 d), BCF can be obtained when BCF exceeds the following. The average concentration of the test item in test water obtained from all the analyzed sample was used to calculate the following calculable BCF.

Level 1 2.3

Level 2 23

14.7.6 Calculation of growth rate constant (k_g)

All individual test fish weight data were converted to natural logarithms and plotted against time (day). Then a linear least squares correlation was calculated and growth rate constant of test fish (k_g) was calculated as the slope of the linear regression line.

14.8 Treatment of numerical values

Values were rounded off in accordance with JIS Z 8401:1999 rule B. Furthermore, numerical values were used for calculation without being rounded.

The concentration values of the test item in test water and fish were rounded off to 3 figures. BCF values were rounded off to 2 figures.

15. Factors that affected reliability of test

No adverse effects on the reliability of the test were noted.

16. Results and discussion

16.1 Lipid content in test fish

The measured lipid contents in the test fish are shown below. The change of lipid contents after the experimental completion versus those before the experimental starting was -7% which was within $\pm 25\%$.

Before the experimental start

3.10%

After the experimental completion

2.87%

16.2 Concentration of the test item in test water

The measured concentrations of the test item in test water are shown in Table-1. Concentrations of the test item were maintained \geq 94% of nominal concentrations and the variations were within $\pm 20\%$ of the average measured concentrations. Concentrations of the test item in test water before the uptake phase were 736 $\mu g/L$ (Level 1) and 63.0 $\mu g/L$ (Level 2). The measured concentration of the test item in test water of control before and after the uptake phase were less than the LOQ of the test item.

Table-1	Measure	d concentra	tions of test	item in test	water	(Unit	: μg/L)
Level	After 5 days	After 13 days	After 18 days	After 21 days	After 28 days	Average (Standard deviation)	Table
1	733	795	688	691	674	716 (49.3)	4
2	66.1	80.1	67.4	72.8	68.1	70.9 (5.73)	5

16.3 Bioconcentration factors

BCFs are shown in Table-2. These BCFs plotted against the duration of uptake phase are shown in Figs. 1 and 2. BCFs of the test item were as follows.

Level 1

<2.3-12

Level 2

<23

Table-2 BCFs

Values in the parenthesis shows the average.

				P		B-
Level	After 5 days	After 13 days	After 18 days	After 21 days	After 28 days	Table
	3 days	4.4	18 days	8.0	5.8	
1	<2.3	4.4	8.4	8.7	7.0	7
2.5	(4.6)	(10)	(8.4)	(6.4)		
2	<23	<23	<23	<23	<23	0
2	<23	<23	<23	<23	<23	8

16.4 BCFs at a steady-state (BCFss)

The BCFss for Level 1 was not calculated because the variation of the concentration of the test item in test fish for four successive analysis were over $\pm 20\%$. The BCFss for Level 2 was not calculated because the test item in all test fish for four successive analyses were less than the LOQ. However, all BCFs were less than 100 and it was evaluated that a steady-state was reached after 28 days in accordance with test method 5. a).

16.5 Growth rate constant (k_g)

The k_g calculated from the all individual test fish weight data were 0.0195 (Level 1), 0.0204 (Level 2) and 0.0155 (Control).

To compare the growth rate constant of the test group (Level 1 and 2) and the control group, growth rate constant were calculated using the test fish data before the experimental start and after the experimental completion. As a result, k_g value for Level 1, 2 and control was 0.0209, 0.0212 and 0.0155 and there were statistically significant differences between Level 1 and Control (P<0.05), and Level 2 and Control (P<0.01). However, it was considered that statistically significant differences of growth rate constant between the test group and the control group was not due to the toxicity of the test item since the difference of k_g were not concentration dependent, and no abnormalities were observed in test fish of Level 1 and 2. Therefore, we concluded that this difference did not affect the evaluation of bioconcentration potential of the test item.

16.6 Results of test fish observation

No abnormality in behavior or appearance was noted.

16.7 Discussion

The validity criteria of test method

In this test, the validity criteria of test method were applied as following conditions. Therefore we concluded that it was reasonable test conditions to estimate bioconcentration potential of the test item.

- a) The temperature variation is less than ±2°C of set water temperature 25°C.
- b) The concentration of dissolved oxygen does not fall below 60% of saturated concentration 8.1 mg/L at 25°C.

- c) The concentration of the test item in the test tank is maintained within $\pm 20\%$ of the mean of the measured values during the test period.
- d) The mortality or other adverse effects/disease in both control and test group is not observed.

17. Conclusion

The values are substantially lower than the threshold values for bioaccumulating (or very bioaccumulating) substances, according to Japan's Chemical Substances Control Law and Regulation (EC) No 1907/2006 (REACh). Therefore, the substance can be regarded as not bioaccumulative.

Table-3 Calculation table for recovery and blank test (analysis of test water)

Study N	lo. 46100
---------	-----------

						tudy 110. IC
Sample description	A	В	С	Ď	Е	F
					1 iii	
Standard 350µg/L	450.6			\$ (#/		
Recovery a	469.5	1/1	10		3650	104
Recovery b	488.3	1/1	10	-	3790	108
	ĝ	.00				Average
Standard 350µg/L	450.6				**	106
Blank a	n.d.	1/1	10	: e. :	-	
Blank b	n.d.	1/1	10	•	# ##	
				Average	Ħ	
				·		
(a, b: individual sampl	e)					

A: Emission intensity (cps)

A(std): Standard solution A(t): Sample

B: Ratio of portion used for analysis

C: Final volume (mL)

D: Amount of blank in test water (ng)

E: Amount of test item recovered (ng)

 $E = P \times (A(t) / A(std)) / B \times C - D$

F: Recovery rate (%)

 $F = E / Q \times 100$

P: Concentration of test item in standard solution 350µg/L

Q: Amount of test item added (3500ng)

February 18, 2016

Name K. Nishio

Study No. 46100

Sample description	A	I
g.		₩ T
Standard 350µg/L	404.6	5 H
Before uptake phase	452.4	736
Standard 350µg/L	434.1	
Test water after 5 days	483.4	733
Standard 350μg/L	426.2	
Test water after 13 days	514.5	795
Standard 350μg/L	481.9	
Test water after 18 days	503.5	688
Standard 350µg/L	434.9	
Test water after 21 days	456.2	691
Standard 350μg/L	483.7	A D O
Test water after 28 days	494.9	674

Average concentration of test item in test water after exposure 716 (S.D. 49.3)

A: Emission intensity (cps)

A(std): Standard solution A(t): Sample

- B: Ratio of portion used for analysis 1/1
- C: Final volume 10mL
- F: Recovery rate 106%
- H: Volume of test water taken out 5mL
- I: Concentration of test item in test water (µg/L)

$$I = P \times (A(t)/A(std))/B \times C/F \times 100/H$$

J: Average concentration of test item in test water after exposure (µg/L)

$$J = (I(1) + ... + I(n)) / n$$

n: Number of test water analyses (n = 5)

I(1): First analysis of test water I(n): Last analysis of test water

S.D.
$$= \sqrt{\frac{\sum_{i=1}^{n} I(i)^{2} - \left(\sum_{i=1}^{n} I(i)\right)^{2}}{\sum_{i=1}^{n} I(i)}}$$

P: Concentration of test item in standard solution 350µg/L

Name K. Nishio

February 18, 2016

Study No. 46100

Sample description	Ą	. 1	
8			
Standard 350µg/L	404.6	20	
Before uptake phase	386.8	63.0	
Standard 350µg/L	434.1	a a	
Test water after 5 days	435.5	66.1	
Standard 350µg/L	426.2		
Test water after 13 days	518.2	80.1	
Standard 350µg/L	481.9	¥	
Test water after 18 days	493.3	67.4	
Standard 350µg/L	434.9	1	
Test water after 21 days	480.7	72.8	
Standard 350µg/L	483.7		
Test water after 28 days	500.1	68.1	

Average concentration of test item in test water after exposure 70.9 (S.D. 5.73)

A: Emission intensity (cps)

A(std): Standard solution A(t): Sample

- B: Ratio of portion used for analysis 1/1
- C: Final volume 10mL
- F: Recovery rate 106%
- H: Volume of test water taken out 50mL
- I: Concentration of test item in test water (µg/L)

$$I = P \times (A(t) / A(std)) / B \times C / F \times 100 / H$$

J: Average concentration of test item in test water after exposure (µg/L)

$$J = (I(1) + ... + I(n)) / n$$

n: Number of test water analyses (n = 5)

I(1): First analysis of test water I(n): Last analysis of test water

S.D. =
$$\sqrt{\frac{n \times \sum_{i=1}^{n} I(i)^{2} - \left(\sum_{i=1}^{n} I(i)\right)^{2}}{n \times (n-1)}}$$

P: Concentration of test item in standard solution 350µg/L

Name K. Nishio

February 18, 2016

Table-6 Calculation table for recovery and blank test (analysis of test fish)

Sample description	A	С	D	E	F	G
o #		Take				
Standard 350µg/L	539.6		æ			
Recovery a	599.2	1/1	50	-	194000	111
Recovery b	566.6	1/1	50	-	184000	105
		3				Average
8						108
. *						
Standard 350µg/L	539.6		8		9	
Blank a	n.d.	1/1	50	:=	-0	130
Blank b	n.d.	1/1	50	7 4	-	
2 P				Average		
(a, b : individual san A: Emission intensity (c		\$				
A(std) : Standard sol		mple				
B: Ratio of portion used	₩ 8.070.		1/10			
C: Ratio of portion used						
D: Final volume (mL)	# (************************************		and the second s			
E: Amount of blank in t	est fish (ng)					
F: Amount of test item	, (5)					
$F = P \times (A(t) / A(sto))$		·E		1 11		
G: Recovery rate (%)	100 N				œ	
G. Recovery rate (70)			*			
$G = F / Q \times 100$						
,= (item in standar	d solution	350μg/L			

February 18, 2016

Name K. Nishio

Table-7

Calculation table for analysis of test fish (Level 1)

Sample description	Α .	D	G	K	J	M
Standard 350µg/L	551.6					
Test fish after 5 days a	n.d.	1	1.00	-	-	100
Test fish after 5 days b	61.6	1	1.00	1810	2.5	
Standard 350µg/L	570.0	9				
Test fish after 13 days a	109.9	1	1.00	3120	4.4	4.6
Test fish after 13 days b	123.5	1	1.00	3510	4.9	
Standard 350µg/L	560.7					
Test fish after 18 days a	286.8	1	1.00	8290	12	10
Test fish after 18 days b	207.3	-1	1.00	5990	8.4	
Standard 350µg/L	604.7					
Test fish after 21 days a	213.8	1	1.00	5730	8.0	8.4
Test fish after 21 days b	233.5	1	1.00	6260	8.7	
Standard 350µg/L	595.0	1				
Test fish after 28 days a	153.5	1	1.00	4180	5.8	6.4
Test fish after 28 days b	185.0	1	1.00	5040	7.0	
(a, b: individual sample)						

A: Emission intensity (cps)

A(std): Standard solution A(t): Sample

B: Ratio of portion used for analysis 1/1

C: Final volume 50mL

D: Dilution factor

E: Average concentration of blank in analysis of control Ong/g

F: Recovery rate 108%

G: Weight of fine sample (g)

K: Concentration of test item in test fish (ng/g)

 $K = \{ P \times (A(t)/A(std))/B \times D \times C/G - E \}/F \times 100$

H: Average concentration of test item in test water after exposure (µg/L) 716

J: BCF

J = K / H

M: Average value of BCF(a) and BCF(b)

February 18, 2016

 $M = \{ BCF(a) + BCF(b) \} / 2$

P: Concentration of test item in standard solution 350µg/L

Name

K. Nishio

Table-8 Calculation table for analysis of test fish (Level 2)

A

551.6

n.d.

n.d.

570.0

n.d.

n.d.

560.7

n.d.

n.d.

604.7

n.d.

n.d.

595.0

n.d.

n.d.

D

1

1

1

1

1

1

1

1

G

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

K

	J	M	-
	-) (#	
	E #1		
	-	70 <u>-</u>	
•	a .		

Study No. 46100

A: Emission intensity (cps)

A(std): Standard solution A(t): Sample

B: Ratio of portion used for analysis 1/1

C: Final volume 50mL

D: Dilution factor

Sample description

Standard 350µg/L

Standard 350µg/L

Standard 350µg/L Test fish after 18 days a

Standard 350µg/L Test fish after 21 days a

Standard 350µg/L

Test fish after 5 days a

Test fish after 5 days b

Test fish after 13 days a

Test fish after 13 days b

Test fish after 18 days b

Test fish after 21 days b

Test fish after 28 days a

Test fish after 28 days b

(a, b: individual sample)

E: Average concentration of blank in analysis of control Ong/g

F: Recovery rate 108%

G: Weight of fine sample (g)

K: Concentration of test item in test fish (ng/g)

 $K = \{ P \times (A(t)/A(std)) / B \times D \times C/G - E \} / F \times 100$

H: Average concentration of test item in test water after exposure (μg/L) 70.9

J: BCF

J = K / H

M: Average value of BCF(a) and BCF(b)

 $M = \{ BCF(a) + BCF(b) \} / 2$

P: Concentration of test item in standard solution 350µg/L

Name K. Nishio

February 18, 2016

Table-9 Calculation table for analysis of test fish (Control)

G 1 1 · · ·				Production of the second	Study No. 46
Sample description	A	E		G	I
					*
Standard 350µg/L	519.5				
Before the experimental start a	n.d.	-		1.00	-
Before the experimental start b	n.d.	-		1.00	=
					a 5
Standard 350μg/L	536.5		<u>8</u>]		
After the experimental completion a	n.d.	-		1.00	-
After the experimental completion b	n.d.	=		1.00	8.5
(E)					
*					
*	%			8	Average
8					
(a, b: individual sample)					
			¥3		
A: Emission intensity (cps)					
A(std): Standard solution A(t): San	nple				
B: Ratio of portion used for analysis 1	/1				
C: Final volume 50mL					
E: Amount of blank in analysis of contro	ol (ng)				(6)
$E=P \times (A(t)/A(std))/B \times C$					
G: Weight of fine sample (g)			100		*
I: Concentration of blank in test fish (n	g/g)		8		
I = E / G					
P: Concentration of test item in standard	d solution	350μg/L			
		1000000			

February 18, 2016 Name K. Nishio

Reference 1 Analytical results of dilution water (Dechlorinated water)
Sampling date January 5, 2016

1 3	T	·····	
Item (G. M.)	Unit	Measured value	Determination limit
Total hardness (Ca, Mg)	mg/L	35	1
Suspended solid	mg/L	<1	1
pH	-	7.7	-
Total organic carbon	mg/L	< 0.5	0.5
Chemical oxygen demand	mg/L	< 1	1
Residual chlorine	mg/L	< 0.02	0.02
Ammonium ion	mg/L	< 0.1	0.1
Total cyanide	mg/L	< 0.05	0.05
Alkalinity	mg/L	38	1
Electric conductivity	μS/cm	150	1
Total mercury	mg/L	< 0.0005	0.0005
Cadmium	mg/L	< 0.001	0.001
Chromium (VI)	mg/L	< 0.01	0.01
Lead	mg/L	< 0.001	0.001
Arsenic	mg/L	< 0.005	0.005
Iron	mg/L	< 0.01	0.01
Copper	mg/L	0.001	0.001
Cobalt	mg/L	< 0.001	0.001
Manganese	mg/L	< 0.005	0.005
Aluminium	mg/L	< 0.02	0.02
Zinc	mg/L	< 0.1	0.1
Nickel	mg/L	< 0.001	0.001
Silver	mg/L	< 0.0001	0.0001
Organochlorine pesticides			
1,2-Dichloropropane	mg/L	< 0.002	0.002
Chlorothalonil	mg/L	< 0.001	0.001
Propyzamide	mg/L	< 0.0008	0.0008
Chlornitrofen	mg/L	< 0.0001	0.0001
Simazine	mg/L	< 0.0003	0.0003
Thiobencarb	mg/L	< 0.001	0.001
Organophosphorous pesticides			
Diazinon	mg/L	< 0.0005	0.0005
Isoxathion	mg/L	< 0.0008	0.0008
Fenitrothion	mg/L	< 0.0003	0.0003
EPN	mg/L	< 0.0006	0.0006
Dichlorvos	mg/L	< 0.001	0.001
Iprobenfos	mg/L	< 0.0008	0.0008
PCB	mg/L	< 0.0005	0.0005
Coliform bacteria count		n.d.	
Fluorine	mg/L	0.4	0.1
Anionic surfactant	mg/L	< 0.02	0.02

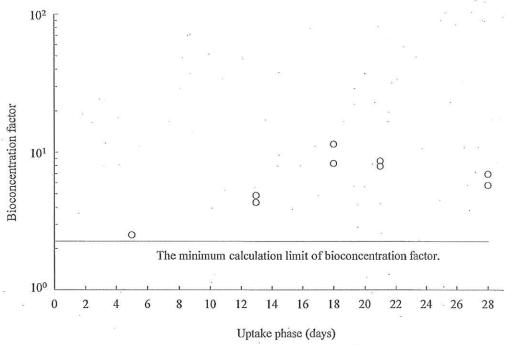


Fig.1 Correlation between uptake phase and bioconcentration factor (Level 1).

One data after 5 days was lower than detection limit.

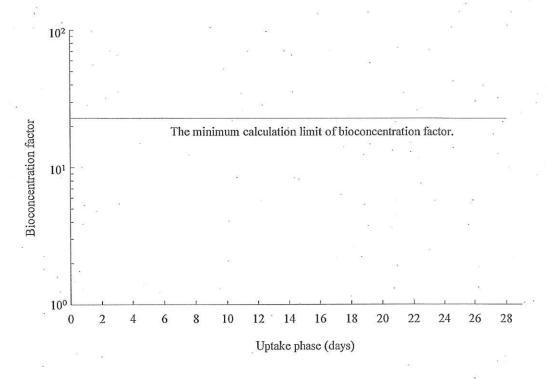
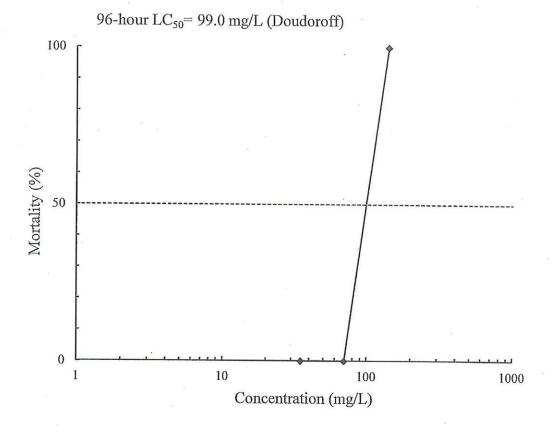
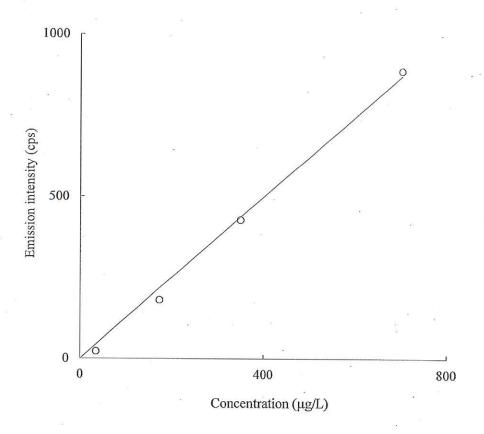



Fig.2 Correlation between uptake phase and bioconcentration factor (Level 2).

Ten data after 5, 13, 18, 21 and 28 days were lower than detection limit.


February 23, 2016 Name K - Nishio

Concentration	Cumulative Mortality (%)				
(mg/L)	24 hours	48 hours	72 hours	96 hours	
Control	0	0	0	0	
35.0	0	0	0	0	
70.0	0	0	0	0	
140	100	100	100	100	

Fig. 3 Concentration - mortality curve.

Date: January 11, 2016 Name Takeski Shibashi

y = 1.25xr = 0.997


Concentration	Emission intensity
(μg/L)	(cps)
35.0	22.5
175	181.3
350	428.7
700 .	891.4

Fig. 4 Calibration curve of test item (analysis of test water).

February 12, 2016

Name

K. Nishio

y = 1.47xr = 1.000

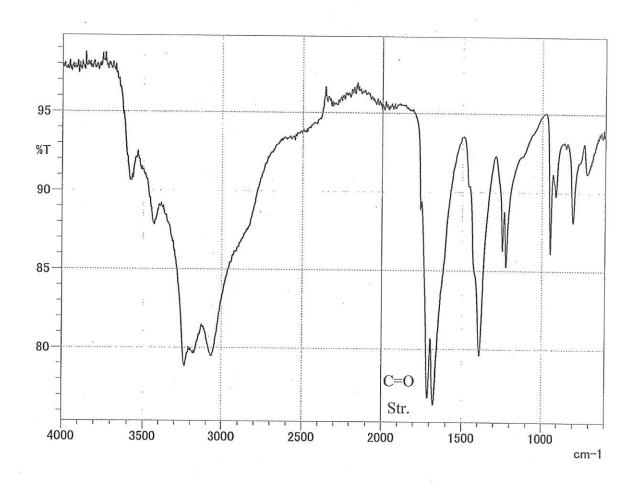

Concentration	Emission intensity
(μg/L)	(cps)
35.0	43.5
175	245.5
350	531.0
700	1023.8

Fig. 5 Calibration curve of test item (analysis of test fish).

February 12, 2016

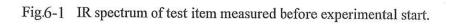
Name

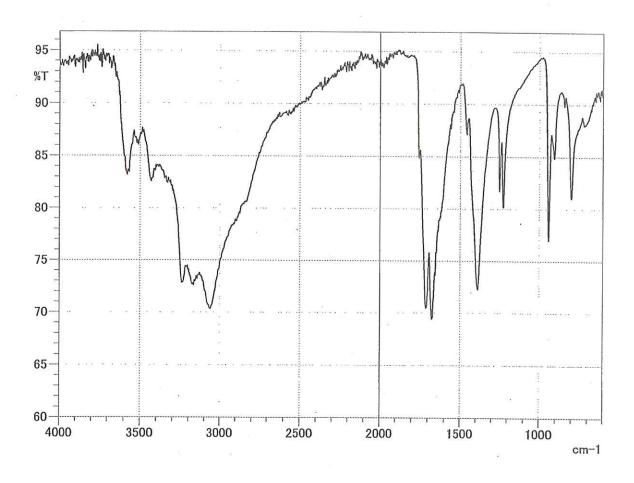
K. Nishio

Instrument

: Shimadzu IRAffinity-1S : 46100

Study No.


Sample Method


: Test item : ATR

Date

: December 17, 2015 : K. Nishio

Name

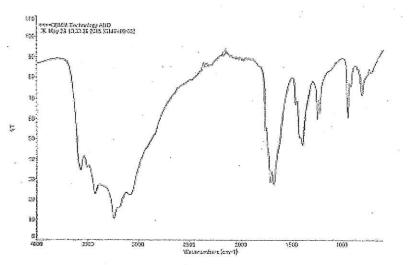
Instrument

: Shimadzu IRAffinity-1S : 46100

Study No.
Sample

: Test item

Method


: ATR

Date

: February 16, 2016

Name

Fig.6-2 IR spectrum of test item measured after experimental completion.

Reference 2 IR spectrum supplied by sponsor.

STUDY PLAN AMENDMENT No. 2

Chemicals Evaluation and Research Institute, Japan, Kurume

1.	Title (Study number)	
	Bioconcentration study of ANO in common carp (46	(001

2.	Content		
	12.1	Test item	(Page 5) (See the attached sheet for reason and dat

3. Approval Study Director	Date	March 8, 2016
	Name	Maolei Hashizume Naoki Hashizume

Attached sheet

Content 12.1 Test item (Page 5)

Reason for amendment:

Information provided from the sponsor has changed.

Amendments detail

	-		
	a)	Chemical name	
Defens		Chemical name	Reaction mass of ammonium oxobis (ethanedioato)
Before			bisaquo niobate (V) hydrates and ammonium hydrogen
amendments			ethanedioate ethanedioic acis dihydrate
		Another name	ANO
	a)	Chemical name etc.	
		Chemical name	Mixture of ammonium oxobis(ethanedioato) bisaquo
			niobate(V) hydrates and ammonium hydrogen
4.0			ethanedioate ethandioic acid dehydrate
After		Synonym (anhyc	lrous form)
amendments			Reaction mass of ammonium diaqua[bis(oxalate)]
			oxoniobate(1-) and ammonium hydrogen oxalate oxalic
			acid (1:1:1)
		Abbreviation	ANO

ATTN: CBMM Technology Suisse SA

April 18, 2016

Reference No.

8479092

Sumika Chemical Analysis Service, Ltd. Chemicals Compliance Division Sumitomo Fudosan Hongo Bldg, Hongo 3-22-5, Bunkyo-ku, Tokyo, 113-0033, JAPAN

<u>Analysis Report</u>

Sampling and testing was conducted by the client order dated 21 May, 2015.

1. Title of the test: Bioconcentration study

2. Test item: ANO

3. Study number: 46100

4.

Methods and results: Presented in the attached documents

Reports: 5.

Final report (English); 1 copy

Test report (Japanese); 1 copy

If you have any questions about this report, please make inquiries to the person in charge.

General supervisor:

Koichi Matsumoto

Person in charge:

Kazumi Kawahara K.VAWAWARA

TEL +81-3-5689-1216

FAX +81-3-5689-1221

濃縮度試験結果報告書

1. 一般的事項

新規化学物質の名称	Mixture of ammonium oxobis(ethanedioato) bisaquo niobate(V) hydrates			
(IUPAC 命名法による)	and ammonium hydrogen ethanedioate ethandioic acid dehydrate			
別名	ANO			
C A S 番 号	-			
構造式又は示性式 (いずれも不明の場合は、 その製法の概要)	Constituent 1 : $NH_4[NbO(C_2O_4)_2 \cdot 2H_2O] \cdot 3H_2O$ Constituent 2 : $(NH_4C_2HO_4)_2 \cdot (C_2O_4H_2 \cdot 2H_2O)_2$			
分 子 量	Constituent 1:393.06			
刀 1 里	Constituent 2: 466.26			
試験に供した新規化学物質の純度(%)	97% (Constituent 1 : 70%, Constituent 2 : 27%)			
試験に供した新規 化学物質のロット番号	AD/5275			
不純物の名称	Water 2.5%			
及び含有率	Inorganic impurities 0.5%			
蒸 気 圧	-			
対 水 溶 解 度	10 g/L (目視, 当試験施設測定データ)			
1-オクタノール/水分配係数				
融点	-			
沸点	-			
常温における性状	白色固体			
安 定 性	安定			
	溶媒溶解度溶媒中の安定性			
溶媒に対する溶解度等				

分解度試験の結果、被験物質(ANO)は完全に生分解され、28日間の培養終了時における 残留物として水酸化ニオブ(V)が認められた。化審法においては、水酸化ニオブ(V)の濃縮度 試験が求められるが、水酸化ニオブは水に不溶であることから、水酸化ニオブ(V)の濃縮度試験 の実施は困難であると考えられた。経済産業省との相談の結果、ANOを被験物質として、ニオブ イオンを定量することにより濃縮度試験を実施し、水酸化ニオブ(V)の濃縮性を評価すること となった。本試験における濃度は、被験物質である ANO の濃度で示した。

2. 急性毒性試験

供 試 魚 (学名)	コイ (Cyprinus carpio)	
L C 5 0 (9 6 h r)	99.0 mg/L	
助 剤 の 使 用	無	
助剤を使用した場合の	名 称	濃 度
名 称 及 び 濃 度	-	-

3. 試験方法

J. p.	() (A)	74			
試		法	31日、薬食発 0331 第 7号 企発第 110331009 号;一部 0402 第 1 号、平成 24・03・28 号) に定める「魚介類の体 b) "305-I: Aqueous Exposure B the OECD Guidelines for Tes	験の方法について」(平成23年3月 、平成23·03·29 製局第5号、環保 3改正 平成24年4月2日、薬食発 3製局第2号、環保企発第120402001 内における化学物質の濃縮度試験」 ioconcentration Fish Test" stipulated in sting of Chemicals, No.305, October 2, sh: Aqueous and Dietary Exposure"	
供	試 魚 (学名)	コイ (Cyprinus carpio)		
脂	質 含 量 (%)	開始時:3.10	終了時: 2.87	
かけ悪谷			第一濃度区	700	
牧聯	è物質設定濃度(μg/	L) [第二濃度区	70	
助	剤 の 使	用	無		
		名 称	濃度		
10000	助剤を使用した場合			第一濃度区: -	
			-	第二濃度区: -	
名称及び濃度			-		

4. 試験結果

(1) 濃縮度試験の結果表

() 内は平均値

	取込期間	5 日後	13 日後	18 日後	21 日後	28 日後
50000 = 81 m25	水中の被験物 質濃度(μg/L)	733	795	688	691	674
第一濃度区 濃縮倍率		<2.3 2.5	4.4 4.9 (4.6)	12 8.4 (10)	8.0 8.7 (8.4)	5.8 7.0 (6.4)
	水中の被験物 質濃度(μg/L)	66.1	80.1	67.4	72.8	68.1
第二濃度区	濃縮倍率	<23 <23	<23 <23	<23 <23	<23 <23	<23 <23

(2) 定常状態における濃縮倍率又は濃縮倍率の上下限

濃度区		濃縮倍率		
第一濃度区	BCF	2.3 倍未満~12 倍		
第二濃度区	BCF	23 倍未満		

5. 試験水及び魚体分析方法

試験水及び供試魚中の被験物質分析(ニオブイオン)は誘導結合プラズマ発光分光分析法 (ICP-AES) により行った。

(1) 試験水及び魚体分析フロー

①試験水分析

採水 → 加熱(硫酸添加)→ 分析

②供試魚分析

酸分解 → 分析

(2) 使用した分析機器の種類とその条件

機器	誘導結合プラズマ発光分光分析計
	Optima 5300 DV (パーキンエルマー)
測定元素	ニオブ
測定波長	269.706 nm
プラズマガン	ス アルゴン 15 L/min
キャリアガン	ス アルゴン 0.70 L/min
補助ガス	窒素 0.2 L/min
RF 出力	1300 W
観測方向	ラジアル
観測点	15.0 mm
試料導入速	隻 1.00 mL/min

6. 回 収 率 (平均値)

水からの回収率	(%)	106
魚体からの回収率	(%)	108

7. 考 察

試験の有効性

本試験において、試験法に規定された試験の有効性を下記のとおり満たしており、被験物質の濃縮性を妥当に評価できると考えられる。

- a) 試験温度の変動は、設定値 25℃の±2℃未満であった。
- b) 溶存酸素濃度は、25℃の飽和濃度 8.1 mg/L の 60%以上であった。
- c) 試験水中の被験物質濃度の変動は、実験期間中の測定値の平均に対して±20%以内であった。
- d) 対照区及び試験区の供試魚において、死亡又は病気などの異常はみられなかった。

8. その他

	名 称	一般財団法人化学物質評価研究機構 久留米事業所
試験実施施設		〒839-0801 福岡県久留米市宮ノ陣三丁目2番7号
	所 在 地	電話: 0942-34-1500
		FAX: 0942-39-6804
試験責任者	職氏名	橋 爪 直 樹
武 恢 貝 仁 名	経験年数	7年
試 験 番 号	46100	
試 験 期 間	2015 年 12	月 22 日 から 2016 年 4 月 12 日 まで

本様式の作成責任者	所	属	一般財団法人化学物質評価研究機構 久留米事業所
平塚八//	氏	名	橋 爪 直 樹